
REPROZIP
Using Provenance to Support

Computational Reproducibility
Fernando Chirigati

NYU-Poly
Dennis Shasha

NYU
Juliana Freire

NYU-Poly & NYU

TaPP’13

Reproducibility

Good science requires reproducibility

Computational experiments require reproducibility

A program P running on computational environment E at time T
is said to be reproducible if it yields the same answer on
environment E’ at time T’ > T

“If I have seen further, it is by standing on the shoulders of giants.”
Isaac Newton

Computational Reproducibility

Few computational experiments are reproducible

Why?

We need provenance

How to encapsulate my experiment?
What should be included?
Too many dependencies…
Too many files to keep track…
Sigh. Author

Description of the data

Specification of the experiment

Description of the environment

Computational Reproducibility

Manually tracking provenance is rarely feasible
Description of computational environment is hard to capture: It is

time consuming and error prone

“authors have complained that the process requires too much work
for the benefit derived”

 Bonnet et al, SIGMOD Record 2011

“Insufficient time is the main reason why scientists do not make
their data and experiment available and reproducible.”

 Carol Tenopir, Beyond the PDF 2 Conference

The process should be simple and automatic!

What tools are available to
support reproducible

experiments?

State of the Art

Domain-specific tools [GenePattern, Madagascar, Sumatra,…]

 Do not capture provenance of experiments that straddle multiple tools

Scientific workflow systems [VisTrails, Kepler, Taverna, …]
Fail to capture provenance of the computational environment

Do not support portability

Users must integrate the software they need into these systems

 Time consuming, and scientists do not have time to spare…

Configuration management tools [Chef, Puppet, Fabric]
Recipes to configure machines may interfere with the target

computational environment

State of the Art

Virtual machines
Portable across multiple operating systems

Snapshots are usually very large

Users must port the experiment to a virtual machine: Again, time
consuming

System-level provenance capture
 [Burrito, ES3, PASS] Describe how data products were derived in detail, but
do not create an executable description to attain reproducibility and portability

 [CDE] supports reproducibility

 Lower overhead than a virtual machine: copy just what you need

 Hard to further explore the experiment

 Adds run-time overhead when executing the packaged experiment

Our Approach: ReproZip

Automatically and systematically captures required
provenance of existing experiments

Uses captured provenance to:

Create self-contained reproducible packages for the experiment

 Include all the binaries, data and dependencies

Derive a workflow specification for the experiment

Readers/reviewers can then extract the packages and
execute the workflow to reproduce and explore the
experiment

How does it work?

Packing Experiments

Experiment

AUTHORS

Computational Environment E

Experiment ReproZip

Computational Environment E

Execution

Packing Experiments AUTHORS

Experiment ReproZip

Capture Provenance

Computational Environment E

+

Execution

Packing Experiments AUTHORS

Experiment ReproZip

Capture Provenance

Computational Environment E

+

Execution

Packing Experiments AUTHORS

Experiment ReproZip

Capture Provenance

Computational Environment E

Execution p’

Provenance Tree

p

Packing Experiments AUTHORS

Experiment ReproZip

Capture of Provenance

Computational Environment E

Execution p’

p

•  command-line
arguments

•  working directory
•  files read
•  files written
…

process p’

Packing Experiments AUTHORS

Experiment ReproZip

Capture of Provenance

Computational Environment E

Execution

Provenance Tree

Identification of
Necessary

Components

Input and output files

Description of data

Executable programs and steps

Description of experiment

Environment variables, dependencies, …

Description of environment

Packing Experiments AUTHORS

Experiment ReproZip

Capture of Provenance

Computational Environment E

Execution

Provenance Tree

Identification of
Necessary

Components

Input and output files

Description of data

Executable programs and steps

Description of experiment

Environment variables, dependencies, …

Description of environment

VisTrails Workflow

��������

����	�
����������	�
	��

����

����������	�
	��

���	�
�����������
	�����

�	��	�
����������	�
	�����

���	��
�����������
	�����

���	��
��������

Specification of
Workflow

Packing Experiments AUTHORS

Experiment ReproZip

Capture of Provenance

Computational Environment E

Execution

Provenance Tree

Identification of
Necessary

Components

Input and output files

Description of data

Executable programs and steps

Description of experiment

Environment variables, dependencies, …

Description of environment

VisTrails Workflow

��������

����	�
����������	�
	��

����

����������	�
	��

���	�
�����������
	�����

�	��	�
����������	�
	�����

���	��
�����������
	�����

���	��
��������

Specification of
Workflow

Reproducible
Package

Packing Experiments AUTHORS

Verifying the Topological
Correctness of Marching Cubes

Algorithms
An example of making an experiment reproducible with ReproZip

Packing: Example

./mc33verification input/3741-scalar_field.iso output/output.txt

Original Command Line

Packing: Example

./mc33verification input/3741-scalar_field.iso output/output.txt

Original Command Line

python ~/reprozip/pack.py -e -c “./mc33verification input/3741-scalar_field.iso output/output.txt”

Packing with ReproZip

Packing: Capture Provenance

./mc33verification input/3741-scalar_field.iso output/output.txt

Original Command Line

python ~/reprozip/pack.py -e -c “./mc33verification input/3741-scalar_field.iso output/output.txt”

Packing with ReproZip

./mc33verification

./programs/analyzeGrid ./programs/modifiedMC33

./programs/subdivideGrid

Provenance Tree

Packing: Configure Package

./mc33verification input/3741-scalar_field.iso output/output.txt

Original Command Line

python ~/reprozip/pack.py -e -c “./mc33verification input/3741-scalar_field.iso output/output.txt”

Packing with ReproZip

Provenance Tree

Configuration File

Packing: Deriving Workflow
Specification

python ~/reprozip/pack.py -g --name=mc33verification

Creating the reproducible package and the workflow

Packing: Deriving Workflow
Specification

python ~/reprozip/pack.py -g --name=mc33verification

Creating the reproducible package and the workflow

VisTrails Workflow

input/3741-scalar_field.iso

output/output.txt

./mc33verification

Packing: Deriving Package

python ~/reprozip/pack.py -g --name=mc33verification

Creating the reproducible package and the workflow

Files, binaries, …

VisTrails Workflow

input/3741-scalar_field.iso

output/output.txt

./mc33verification

Reproducible
Package

Computational Environment E’

REVIEWERS
READERS

E’ compatible with E

Reproducible
Package

Unpacking Experiments

Computational Environment E’

REVIEWERS
READERS

E’ compatible with E

Reproducible
Package ReproZip

Extraction

Unpacking Experiments

Computational Environment E’

REVIEWERS
READERS

E’ compatible with E

Reproducible
Package ReproZip

Extraction

Unpacking Experiments

Experiment
(binaries, input files,
dependencies, …)

VisTrails Workflow

��������

����	�
����������	�
	��

����

����������	�
	��

���	�
�����������
	�����

�	��	�
����������	�
	�����

���	��
�����������
	�����

���	��
��������

Unpacking: Example

python ~/reprozip/unpack.py mc33verification

Unpacking experiment

Unpacking: Example

python ~/reprozip/unpack.py mc33verification

Unpacking experiment

./mc33verification

Verification and Exploration

Reproducibility of deterministic process

Two ways to reproducing the results:

./mc33experiment/rep.exec

Command-line execution

VisTrails Workflow

Verification and Exploration

Visualize result

Verification and Exploration

Visualization

Verification and Exploration

Parameter Exploration

Conclusion
ReproZip aims to simplify the creation of reproducible experiments

It captures provenance and identifies the components needed to
reproduce results

Users can customize the package

Integrated with scientific workflows
Scientists can reap the benefits without the cost

Further explore the results and get review provenance for free

Limitations
Works only on Linux

Package may not run

•  If underlying software is incompatible with target environment---for
this situation, we suggest the use of a VM

•  Executables that use hard-coded paths

Acknowledgments

•  Claudio Silva and the VisTrails team

•  This work is partially supported by the National Science Foundation
awards CNS-1229185, IIS-1139832, IIS-1142013, CNS-1153503,
IIS-0905385.

Thank you!

