FACILITATING REPRODUCIBILITY
AFTER THE FACT

Fernando Chirigati
ViDA — Visualization and Data Analysis Lab

NYU Polytechnic School of Engineering

‘%’l NNNNNNNNNNNNNNNNN

Reproducibility? What? Why?

No need for motivation here.

Reproducibility may be hard. Why?
Cultural Change
Potential Lack of Attribution
Legal Barriers

Burdensome

Too many dependencies!

) DATA

| | . » _
%P ROVENANEEOW

ENVIRONMENT

Too many differentyplatforms!

om intelerad-insider.com

“authors have complained that the process requires too
much work for the benefit derived”

“Insufficient time is the main reason why scientists do not =
make their data and experiment available and reproducible.”

I

“77% claim that they do not have time to document and
clean up the code.”

Bonnet et al., SIGMOD Record 2011

Carol Tenopir, Beyond the PDF 2 Conference

Victoria Stodden, Survey of the Machine Learning Community — NIPS 2010

“It would require huge amount of effort to make our code
work with the latest versions of these tools.”

Collberg et al., Repeatability and Benefaction in Computer Systems Research,
University of Arizona TR 14-04

Planning for Reproducibility

Scientific Workflow Systems (VisTrails, Taverna, Kepler, ...)
Virtual Machines and Containers (VirtualBox, Vagrant, Docker, ...)
Configuration Management Tools (Chef, Puppet, ...)

... and many others !

But what about reproducibility after the fact?

Again, time-consuming and error-prone!

Reproducibility After the Fact

noWorkflow
Provenance <1
Capture ,

<«

ReproZip

Process should be
simple, automatic, and non-intrusive!

NOWORKFLOW
CAPTURING AND ANALYZING
PROVENANCE OF SCRIPTS

Joint work with: Joao Felipe Pimentel (UFF)
Leonardo Murta (UFF)
Vanessa Braganholo (UFF)

David Koop (UMass-Dartmouth)
Juliana Freire (NYU)

((// NEW YORK UNIVERSITY ’ m
] Instituto de g

computacao

Provenance for Scripts!

Goal: provenance analysis for scripts
Challenge: transparent and non-intrusive provenance capture

Scientific Workflows — VisTrails, Taverna, ... intrusive

OS-Level Tools — ES3, Burrito, and Pass [1,2,3] different provenance level
Provenance API for Python [4] intrusive

VCR [5] intrusive

Sumatra [6] intrusive

ProvenanceCurious [7] non-transparent

Tariqg et al. = LLVM compiler framework [8] no dynamic information

noWorkflow

Transparently captures the provenance of a script
Language-independent approach
Language-dependent solution (Python)

Is non-intrusive: no need for user-defined annotations, instrumented
environment, or other requirements

Provides different methods for provenance analysis
Visualization of Trials
Evolution Graph
Diff Analysis
Querying
IPython Notebook

How does noWorkflow work?

Instead of running

$ python my script.py

users run

$ now run my script.py

That’s it.

Provenance Capture

r —- — _— e e e e—— — — — — —

| DEFINITION PROVENANCE DEepPLOYMENT PROVENANCE

Python’s modules
(os, socket, platform, |=—
modulefinder)

| AST Analysis
| and Disassembly

—

Ei Diff Analysis

Visualization
of Trials

| Content Database | | Querying

| .noworkflow directory ||

L — - - - —- - 4d L e m m —m —_— -

Provenance Storage Provenance Analysis

ExecutioN PROVENANCE

Profiling, Tracing
and Reflection

IPython
Notebook

Provenance Analysis

$ now list
[now] trials available in the provenance store:
Trial 1: generateClassifier.py
with code hash 6d4calfe98be349b9c39dcf91a71e4df9c3aflfb
ran from 2015-05-19 03:41:25.729536 to None
Trial 2: generateClassifier.py
with code hash 6d4calfe98be349b9c39dcf91a7l1e4df9c3aflfb

ran from 2015-05-19 07:12:09.224764 to 2015-05-19
07:33:59.112497

Trial 3: performRecognition.py
with code hash 3d64107celefa86336d699beald67d0dd28f7c£5

ran from 2015-05-19 07:36:03.621202 to 2015-05-19
07:36:08.242297

Trial 4: performRecognition.py
with code hash 2£3e9a35b72£5194fa0692£f8fbb5da22cb229096

ran from 2015-05-19 07:52:18.722780 to 2015-05-19
07:52:20.822903

Provenance Analysis

S now show —-f 2
[now] trial information:
Id: 2
Inherited Id: 1
Script: generateClassifier.py
Code hash: 6d4calfe98be349b9c39dcf91a7l1e4df9c3aflfb
Start: 2015-05-19 07:12:09.224764
Finish: 2015-05-19 07:33:59.112497
[now] this trial accessed the following files:
Name: digits cls.pkl
Mode: wb
Buffering: default
Content hash before: a69ddffb759e£5708£53cdf55¢c91883405a256fa
Content hash after: 562b9c739d970134400827cc357aa28bd24£6859
Timestamp: 2015-05-19 07:33:59.087665
Function: dump -> ... -> open

Provenance Analysis

$ now show —f 3
[now] trial information:
Id: 3
Inherited Id: 1
Script: performRecognition.py
Code hash: 3d64107celefa86336d699beald67d0dd28f7cf5
Start: 2015-05-19 07:36:03.621202
Finish: 2015-05-19 07:36:08.242297
[now] this trial accessed the following files:
Name: digits_cls.pkl
Mode: rb
Buffering: default
Content hash before: 562b9¢739d970134400827cc357aa28bd24£6859
Content hash after: 562b9c¢739d970134400827cc357aa28bd24£6859
Timestamp: 2015-05-19 07:36:07.405609
Function: load -> ... -> open

Provenance Analysis

$ now diff 2 4
[now] trial diff:

finish changed from 2015-05-19 07:33:59.112497 to 2015-05-19
07:52:20.822903

parent id changed from 1 to 3
script changed from generateClassifier.py to performRecognition.py

code hash changed from 6d4calfe98be349b9c39dcf9la7le4df9c3aflfb to
2f3e9%9a35b72£5194fa0692f8fbb5da22cb229096

start changed from 2015-05-19 07:12:09.224764 to 2015-05-19
07:52:18.722780

duration changed from 1309887733 to 2100123

Provenance Analysis

$ now export 4

%
%

FACT: activation(trial id, id, name, start, finish,
caller activation_id).

o

]

:- dynamic (activation/6) .

activation(4, 210224, '/home/fchirigati/digitRecognition/
performRecognition.py', 1432021938.836802, 1432021940.822519, nil).
activation(4, 210225, '/usr/local/lib/python2.7/dist-packages/numpy/
__init .py', 1432021938.933919, 1432021939.084865, 210224).
activation(4, 210226, '/usr/local/lib/python2.7/dist-packages/
sklearn/activation (4, 210230, 'load', 1432021940.480701,
1432021940.611564, 210224).

activation(4, 210231, 'imread', 1432021940.611702, 1432021940.650233,
210224) .

activation(4, 210232, 'cvtColor', 1432021940.650314,
1432021940.657686, 210224) .

All Scripts Ule e
All Statuses ») o
Ctrl-click to diff trials

< Reload @_@

Exact Match = Combined @ Trial 7

Ctrl-click 1o toggle nodes

2546d07cc916831cc63d44a7aa48ef534f55905¢

Script: performRecognition.py
IMlib/python2.7/dist-packages/numpy/__init__.py Start: 2015-05-19 08:13:21.983213

BRGNS didiecBnition/performRecognition.py Finish: 2015-05-19 08:13:24.216981

= Environment M

PYTHON_IMPLEMENTATION = CPython
PYTHON_VERSION = 2.7.6

OS_NAME = Linux

PWD = /home/fchirigati/digitRecognition
PID = 14841

HOSTNAME = fchirigati-ubuntu

ARCH = 64bit

PROCESSOR = x86_64

- File Accesses M

/usr/local/lib/python2.7/dist-
packages/skimage/data/orb_descriptor_positions.txt
default U

hog

2015-05-19 08:13:23.765053
3fc36db34fc1354f357a7ab4e767bda394fab826
3fc36db34fc1354f357a7ab4e767bda394fab826
/usr/local/lib/python2.7/dist-
packages/skimage/feature/__init__.py -> ... -> open

digits_cls.pkl

default rb
2015-05-19 08:13:23.797647
562b9c739d970134400827cc357aa28bd24f6859
562b9¢c739d970134400827cc357aa28bd24f6859
load -> load -> ... -> open

/usr/local/lib/python2.7/dist-
packages/noworkflow/now/prov_execution/profiler.py

default rU
2015-05-19 08:13:23.996066

3eB82ed0cB8ed209c4c452c63facc51dd1060be7cO
3eB82ed0cB8ed?209cd4cdS2ch3faceS1dd1060bhe7c0

Provenance Analysis

In [1]: %load ext noworkflow
%now set default graph width=430 graph height=150
nip = %now 1ip

In [2]: dry = 0
trial =
trial

%now run --name ipython script script.py $dry

Out[2]:

L 4
Trial 6. Ctri-click to toggle nodes

Momeoac/projectsnowissues/scipylascrpt. py

Provenance Analysis

In [7]: nip.History()

@ ® 1""1—4""
06°°

Out[7]:

Provenance Analysis

In [8]: %%now prolog --result result {trial.id}
duration({trial.id}, read, X)

In [9]: for match in result:
print(match['X'])
0.00296902656555

In [10]: %%now sql
SELECT DISTINCT script FROM trial

Out[10]: script

script.py
ipython_script

Future Work

Caching capabilities
Automatic identification of flaws in the execution
Connection between OS- and script-level provenance

Replicability feature

Try it!

Website: https://github.com/gems-uff/noworkflow

L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire: noWorkflow:
Capturing and Analyzing Provenance of Scripts. In Provenance and
Annotation of Data and Processes, vol. 8628, Lecture Notes in Computer
Science (LNCS), pp. 71-83, Springer International Publishing, 2015

Send your feedback and interesting use cases!

REPROZIP
PACKING EXPERIMENTS FOR REPRODUCIBILITY

Joint work with: Rémi Rampin
Dennis Shasha
Juliana Freire

(?‘ NEW YORK UNIVERSITY

Creating Executable Packages!

Goal: creation of executable packages for reproducing experiments

Challenges: transparent, non-intrusive, and language-independent
provenance capture; support to multiple platforms

CDE — Code, Data, and Environment [9]
PTU — Provenance-To-Use [10]

CARE — Comprehensive Archiver for Reproducible Execution [11]

Linux-only

limited interfaces for varying the experiment

ReproZip

Automatically and systematically captures the provenance of an
existing experiment
Language-independent approach and solution

Creates a self-contained reproducible package from captured
provenance

Extracts package in another environment, independent of the
operating system

Provides easy-to-use interfaces for replicating and varying the
original configuration of the experiment

How does ReproZip work?

ReproZip is a packaging tool

Packing Experiments

Computational Environment E (Linux)

Experiment

Packing Experiments

Computational Environment E (Linux)

Executing
—_—>

Experiment reprozip

Packing Experiments

Computational Environment E (Linux)

- Capturing
- Executing Provenance Experiment Provenance
—_— —_—
ptrace + SQLite Data

Experiment reprozip _ .
Input files, output files, parameters, ...

Workflow
Executable programs and steps
Environment

Environment variables, dependencies, ...

Packing Experiments

Computational Environment E (Linux)

Experiment

Executing
L

Configuration
File

Capturing
Provenance

L
ptrace + SQlite

Creating
Configuration

e

Experiment Provenance

Data

Input files, output files, parameters, ...
Workflow

Executable programs and steps
Environment

Environment variables, dependencies, ...

Packing Experiments

Computational Environment E (Linux)

Experiment

Reproducible
Package

Executing
L

Configuring
€<
Packing

Configuration
File

Capturing
Provenance

L
ptrace + SQLite

Creating
Configuration

e

Experiment Provenance

Data

Input files, output files, parameters, ...
Workflow

Executable programs and steps
Environment

Environment variables, dependencies, ...

Packing Experiments

AUTHORS

Computational Environment E (Linux)

Tracing the experiment Gathering provenance
r=-=-=-=-======7==========- T TsT=T == 1
! 2 ot I
I (G- L I
| — a — - : |
I — T |

; I
I . . ptracg+ 3QLite
L Experiment réeprozip ;! , _ '

e e e e e — — — — — — — — — — — — — —————— = — - | Input files, output files, parameters, ... |

Creating the package Configuring the package | I
r—-—========= 1 r======"==-"=====- o 1
: : : ’ ‘(ﬁ\: : | Executable programs and steps :

| 1

I [, \' r I
1 I I 1 i 17y) . . 1
| — 1 — c 1 Environment variables, dependencies, ... "
1 i . . 1
! Reproducible Configuration ;
I I
1

1 1 1
- I
Package Lo File |
1 1]

Unpacking Experiments &%

REVIEWERS
READERS

Computational Environment E’ (potentially different than E)

Reproducible
Package

Unpacking Experiments &%

REVIEWERS
READERS

Computational Environment E’ (potentially different than E)

Extracting
—_—

Reproducible

Package reprounzip

Unpacking Experiments 8&

REVIEWERS
READERS

Computational Environment E’ (potentially different than E)

K l Z 7 unpacks and reproduces

from a single directory
directory (Linux)

Extracting
—_—

Reproducible T <
reprounzip

Package

&

REVIEWERS
READERS

Unpacking Experiments

Computational Environment E’ (potentially different than E)

K l z 7 unpacks and reproduces

from a single directory
directory (Linux)

@ unpacks in a single directory
and builds a full system environment

: chroot (Linux)
Extracting O ! <
— N\ /.
~EX

reprounzip

Reproducible
Package

&

REVIEWERS
READERS

Unpacking Experiments

Computational Environment E’ (potentially different than E)

K l z 7 unpacks and reproduces

from a single directory
directory (Linux)

@ unpacks in a single directory
and builds a full system environment

‘ chroot (Linux)
Extracting O !
Reproducible -

reprounzi : . . .
Package P P &F unpacks in a virtual machine

S using Vagrant
(Linux, Mac OS X, Windows)

vagrant

Unpacking Experiments 8&

REVIEWERS
READERS

Computational Environment E’ (potentially different than E)

K l Z 7 unpacks and reproduces

from a single directory
directory (Linux)

@ unpacks in a single directory
and builds a full system environment

chroot (Linux)

Extracting
E—
Reproducible

reprounzi : . . .
Package P P XF unpacks in a virtual machine

. using Vagrant
(Linux, Mac OS X, Windows)

vagrant

‘& unpacks in a Docker container
(Linux, Mac OS X, Windows)

\ docker

Unpacking Experiments

REVIEWERS
READERS

Inspecting a reproducible package:
info, showfiles, graph

Running an unpacker:
setup, run, destroy, upload, download

Natively installing required software dependencies:
installpkgs

Example

PREDICTING THE VALUE OF A HANDWRITING DIGIT

MNIST
Database

Main
Dependencies

A

~

-

FROM AN IMAGE

SVYMm
Classifier Classifier Recognition | o pregiction
Construction Phase
HOG Image
Features

scikit-learn

scikit-image
opencv

Demo

News!

ReproZip ...
... has been adopted in the Bonneau Lab (NYU)
http://bonneaulab.bio.nyu.edu/

... Will be used by the ACM SIGMOD 2015 Reproducibility Review
http://db-reproducibility.seas.harvard.edu/

... Will be used by the Information Systems journal (Reproducibility
Section)

http://www.journals.elsevier.com/information-systems/

... iIs being used for enabling automatic version upgrades of complex
systems (work submitted to TaPP’15 by Dennis Shasha and
colleagues)

Wrap-Up: Main Advantages

Automatically captures experimental steps

Preserves experiment in a package (longevity)

Allows configuration of what should (not) be included in the package
Allows reproducibility of graphical tools

Allows experiment to be reproduced using the same configuration
(replicability)

Allows users to change command line parameters and input files
(modifiability)

Experiments can be ported from Linux to Mac OS X and Windows
(portability)

Wrap-Up: Limitations

Only packs experiments in Linux distros (yet...)

Only detects software packages in Debian-based environments
(yet...)

Does not guarantee reproducibility of distributed applications

Does not allow reproducibility of non-deterministic processes
Does not save state

Future Work

Creating reproducible packages in Mac OS X

|dentifying software packages in other systems

Proprietary software

Improvements in the provenance graph generation

Creation of dataflows (increases modifiability) — ongoing work
Reproducibility of distributed applications — ongoing work

Integration with other tools (noWorkflow, Liquid Version Climber, ...)

Try it!

Website: http://vida-nyu.github.io/reprozip/
GitHub: https://github.com/ViDA-NYU/reprozip

Mailing lists: reprozip-users@vgc.poly.edu
reprozip-dev@vgc.poly.edu

F. Chirigati, D. Shasha, and J. Freire: Packing Experiments for Sharing and
Publication. In Proceedings of the 2013 International Conference on
Management of Data (SIGMOD), pp. 977-980, 2013

F. Chirigati, D. Shasha, and J. Freire: ReproZip: Using Provenance to
Support Computational Reproducibility. In Proceedings of the 5th USENIX
conference on Theory and Practice of Provenance (TaPP), 2013

Send your feedback and interesting use cases!

Thanks!

Questions?

(?’ NEW YORK UNIVERSITY

References

[1] Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of computational
provenance. Concurrency and Computation: Practice and Experience 20(5), 485-496 (2008)

[2] Guo, P.J., Seltzer, M.: BURRITO: Wrapping Your Lab Notebook in Computational Infrastructure.
In: TaPP. pp. 7-7 (2012)

[3] Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-aware storage
systems. In: USENIX. pp. 4—4 (2006)

[4] Bochner, C., Gude, R., Schreiber, A.: A Python Library for Provenance Recording and Querying.
In: IPAW. pp. 229-240 (2008)

[5] Gavish, M., Donoho, D.: A Universal Identifier for Computational Results. Procedia Computer
Science 4, 637-647 (2011)

[6] Davison, A.: Automated Capture of Experiment Context for Easier Reproducibility in
Computational Research. Computing in Science Engineering 14(4), 48-56 (2012)

[7] Hug, M.R., Apers, P.M.G., Wombacher, A.: ProvenanceCurious: a tool to infer data provenance
from scripts. In: EDBT. pp. 765-768 (2013)

[8] Tarig, D., Ali, M., Gehani, A.: Towards automated collection of application-level data
provenance. In: TaPP. pp. 1-5 (2012)

[9] Guo, P.: CDE: run any Linux application on-demand without installation. In Proceedings of
LISA'11. USENIX Association, Berkeley, CA, USA, 2-2 (2011)

[10] Pham, Q., Malik, T., and Foster, I.: Using provenance for repeatability. In Proceedings of TaPP
'13. USENIX Association, Berkeley, CA, USA, Article 2 (2013)

[11] Janin, Y., Vincent, C., and Duraffort, R.: CARE, the comprehensive archiver for reproducible
execution. In Proceedings of TRUST '14. ACM, New York, NY, USA, Article 1 (2014)

