Data Polygamy: The Many-Many Relationships among Urban Spatio-Temporal Data Sets

Fernando Chirigati¹, Harish Doraiswamy¹, Theodoros Damoulas^{2,3}, Juliana Freire¹

¹New York University ²The University of Warwick ³Alan Turing Institute

WA

Urban Data Sets are Polygamous!

There are multiple interactions between entities of a city. These are captured by the **relationships** between urban data sets.

Relationship Queries

Find all data sets **related** to a given data set **D**

Enable *hypothesis generation* and *hypothesis testing*!

Hypothesis Testing

NYC residents often struggle to get a taxi when it is raining.

Long-standing hypothesis:

- Taxi drivers set an income goal
- They reach goal faster on rainy days

Can we test such hypothesis? Yes!

Find relationships between Taxi and Weather data sets

<u>Challenge 1: How to define a data set relationship?</u>

Our Approach: Computational Topology

1) Modeling the Data as a Terrain

3) Identifying Topology-based Relationships

Relationship between features

<u>Challenge 2: Data Complexity</u>

- Multiple spatio-temporal resolutions
- Large data sets
- Relationships can be between any of the attributes

• Valleys

2) Identifying and Computing Topological Features

Neighborhoods of critical points

Positive Features

Negative Features

Thresholds θ^+ and

 θ^- computed in a

data-driven

approach

Index: Merge Tree

 θ^+

Positive Relationship

Negative Relationship

- Relationship between functions
- Relationship Score (τ) Nature of the relationship

#p - #n

• Relationship Strength (ρ) How often they are related

$$precision = \frac{\#tp}{\#tp + \#fp} \quad recall = \frac{\#tp}{\#tp + \#fn}$$

 $\rho = F_1(f_1, f_2) = 2 \times \frac{\text{precision} \times \text{recall}}{1 + 1 + 1}$

Our Approach:

- Monte Carlo tests filter potentially coincidental relationships
- Further filtering using au and ho

Reduces the number of output relationships in around 99%

Interesting Relationships

Taxi and Wind Speed

No. taxis × Wind speed

Taxi and Rainfall

- No. taxis × Precipitation
- + Taxi fare × Precipitation

Weather and Citi Bike

- + Snow precipitation × Trip duration
- Snow precipitation × Active stations

Weather is the most polygamous

