ReproZip: Computational Reproducibility With Ease

Rémi Rampin
New York University
remi.rampin@nyu.edu

Fernando Chirigati
New York University

fchirigati@nyu.edu

ABSTRACT

We present ReproZip, the recommended packaging tool for
the SIGMOD Reproducibility Review. ReproZip was de-
signed to simplify the process of making an existing com-
putational experiment reproducible across platforms, even
when the experiment was put together without reproducibil-
ity in mind. The tool creates a self-contained package for an
experiment by automatically tracking and identifying all its
required dependencies. The researcher can share the package
with others, who can then use ReproZip to unpack the ex-
periment, reproduce the findings on their favorite operating
system, as well as modify the original experiment for reuse
in new research, all with little effort. The demo will consist
of examples of non-trivial experiments, showing how these
can be packed in a Linux machine and reproduced on dif-
ferent machines and operating systems. Demo visitors will
also be able to pack and reproduce their own experiments.

1. INTRODUCTION

Reproducibility of computational experiments across plat-
forms and time brings a range of benefits to science. First,
reproducibility enables reviewers to test the outcomes pre-
sented in papers. Second, it allows new methods to be objec-
tively compared against methods presented in reproducible
publications. Third, researchers are able to build on top of
previous work directly. Last but not least, recent studies in-
dicate that reproducibility increases impact, visibility, and
research quality [1, 26], and helps defeat self-deception [19].

In spite of its importance, achieving reproducibility has
proved elusive for computational experiments, and this has
led to a credibility crisis [10]. Ideally, researchers should cre-
ate a compendium that encompasses all the components that
are required to reproduce the experiment’s results, including
data, code, software, library dependencies, and information
about the source computational environment (e.g., operat-
ing system and hardware architecture), i.e., the provenance
of the experiment. As a computational experiment may con-
sist of intricate chains of dependencies, manually creating

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

Dennis Shasha
New York University

shasha@cs.nyu.edu

Juliana Freire
New York University

juliana.freire@nyu.edu

such a compendium is a hard task at best and barely feasi-
ble most of the time.

There has been work on a plethora of tools that help cre-
ate reproducible experiments and capture their provenance.
Scientific workflow systems [6] represent an experiment as a
dataflow (or workflow), stitching together its different steps
and connecting data and processes in an executable repre-
sentation. But adapting an experiment to run in these sys-
tems requires a steep learning curve that has hampered their
adoption. Configuration management tools [3, 21, 22] auto-
mate the configuration of an experiment (e.g., installation of
dependencies) by supporting the creation of “recipes” that
can be reused every time a new machine needs to be config-
ured; these scripts, however, need to be generated manually
by researchers. Virtual machines (VMs) can be used to en-
capsulate the entire context of an experiment, providing an
exact replica of the computational environment where the
experiment took place. A drawback of virtual machines is
that the derived images can be large, including a number
of files that are not related to the experiment. Lighter-
weight solutions exist for deploying and maintaining soft-
ware containers, such as Docker [9], but similar to VMs,
the researcher is faced with the burden of ensuring that all
necessary dependencies are in the container. Computational
platforms, such as Burrito [14] and Arnold [8], capture the
provenance of all processes at the operating system (OS)
level, recording detailed state information, but only allow
experiments to be replayed in the same system. Last, there
is a class of tools aimed at particular domains, e.g., GenePat-
tern [12] is a genomic analysis platform, Madagascar [16] is
used to analyze seismic data, Sumatra [7] is used for numer-
ical computations, and noWorkflow [18] supports Python
scripts only.

When using any of these solutions, making existing ex-
periments reproducible is a time-consuming and error-prone
process: researchers need to manually deploy dataflows, cre-
ate configuration recipes, or transfer all the provenance to
a VM. This difficulty discourages researchers from creating
reproducible experiments, especially if the reason is solely
for publication purposes [2, 5, 24].

In contrast to these approaches, ReproZip [4] provides
a lightweight solution that makes experiments reproducible
without forethought. Researchers can create an experiment
without thinking about reproducibility and use ReproZip to
make it reproducible and portable to other machines im-
mediately or many years later. ReproZip has been recom-
mended for the SIGMOD Reproducibility Review.*

1http ://db-reproducibility.seas.harvard.edu/



Packing Step

System Call Provenance Package
[ Tracing ] [ Analysis Customization

1
Experiment . .
Package I Experiment 3 Experiment
Generation ] 11 Package ---> Setup Reproduction

| ~

.Y S

~ e
~ .
8 \.\ ',,

Trace Database Configuration File

.
.
.

F—— === == === =1
<--

A ~ A 7
| '
'

v
Experiment
Package
(.rpzfile)

11 (rpzfile)
1
E . Fo .
: Unpackers
: |directory|| chroot ” vagrant || docker ”Zl

_———a

Figure 1: Architecture of ReproZip.

There are packaging systems that can help with repro-
ducibility in the same without-forethought spirit as ReproZip,
including CDE [13], PTU [20], and CARE [15]. They have
the ability to create self-contained packages for the repro-
duction of existing Linux-based experiments. They do so by
tracing the execution, intercepting system calls, and getting
information related to the experiment. Using this prove-
nance, all the necessary components of the experiment are
copied to a package, which can then be sent to someone who
wants to reproduce it. While reproducing an experiment,
these tools dynamically change the system calls to point to
the correct files included in the package.

Similar to these tools, ReproZip automatically and trans-
parently captures the provenance of an existing experiment
by tracing system calls, and uses this information to create
a lightweight reproducible package that includes only the re-
quired files needed for its reproduction. However, ReproZip
adds important features and contributions:

e Portability: Existing packaging systems have limited porta-
bility, as experiments can only be reproduced in envi-
ronments with a compatible Linux kernel. In contrast,
ReproZip provides unpackers that allow researchers to au-
tomatically create a VM or a Docker container encompass-
ing the experiment, thus allowing it to be reproduced in
different OS’es. ReproZip also generates a workflow spec-
ification for the experiment, which can be used to easily
change parameters or modify the original dataflow.

e Faxtensibility: By implementing new unpackers, researchers
can easily extend ReproZip to port experiments to other
environments and systems (e.g., configuration “recipes”
could be generated) while keeping compatibility with ex-
isting packaged experiments.

e Modifiability: ReproZip automatically identifies input files,
parameters, and output files, allowing researchers to easily
modify these for reuse purposes.

e Usability: Researchers have control over the collected trace
and can customize the reproducible package. ReproZip
also provides command-line interfaces that make it easier
to setup, reproduce, and modify the original experiment.

The first (beta) version of ReproZip was developed in
2013 [4]. Since then, we have redesigned the system to be
more general and cover a wider range of reproducibility re-
quirements, and also to substantially improve its usability.
In this demo, we describe ReproZip version 1.x. ReproZip

can be downloaded from https://vida-nyu.github.io/reprozip,

and a tutorial video on how to use the system is available at
https://bit.1ly/1N9QHCs.

2. SYSTEM ARCHITECTURE

ReproZip supports two main tasks (Figure 1): packing,
which captures the dependencies for an experiment and cre-
ates a self-contained package, and unpacking, which supports

the extraction of the package’s content and the reproduction
of the original experiment. In the following, assume a com-
putational experiment F that runs on a single machine on
OS S and that can be executed by running command line c.

2.1 Packing Experiments

The packing step is accomplished by four main modules:
System Call Tracing, Provenance Analysis, Package Cus-
tomization, and Package Generation (Figure 1). reprozip
is the command-line tool responsible for this step.

System Call Tracing. To create a reproducible package,
ReproZip needs to identify all the dependencies for £. Com-
mand c is prepended with reprozip trace, which runs E
while tracing all the system calls; since this is done through
ptrace, S must (currently) be a Linux-based OS. By trac-
ing system calls, ReproZip can transparently capture all
the provenance of E. For instance, execve is used to ex-
ecute programs, open informs ReproZip which files are be-
ing opened, and read and write read from and write to a
file, respectively. Therefore, ReproZip collects a plethora
of information regarding F, including command-line argu-
ments, environment variables, files read, and files written,
and stores everything in a SQLite database.

The previous version of ReproZip used SystemTap [23] for
tracing and MongoDB [17] for storage. While SystemTap is
complex to install and update, ptrace is part of the Linux
kernel. SQLite is also much lighter than MongoDB and part
of the Python distribution. These changes were made to
enhance usability, as the packing step no longer has external
requirements.

Provenance Analysis. The provenance data is analyzed
to detect the required components of E. For instance, given
the files that were read and using the package manager of the
OS, ReproZip can identify the software packages on which
E depends. ReproZip also uses some heuristics to identify
input and output files: files that were only read but that
do not belong to any software package are considered in-
put files; files that were only written are considered output
files; files that were read and then written are considered
stateful files (e.g., log or database files). This significantly
improves the beta version of ReproZip, in which the prove-
nance analysis is limited to detecting explicit input/output
files and parameters from c. All the collected information is
then written to a human-readable configuration file, which
can be edited by researchers.

Package Customization. The configuration file contains
all the required information for packing F, including: exe-
cution information (e.g., command, arguments, working di-
rectory, environment variables, and OS information), input
files, output files, and identified software packages. FEven
though this automatically-generated file is sufficient to cre-
ate a working experiment package, researchers may edit this
file (i) to modify command-line arguments; (ii) to modify



Mac 0s X

1
1 [reprozip trace python prediction.p y]
1

( reprounzip docker run prediction ]
1

|

—
~
3
]
g
T
b~}
n
o

L=
S
2
3
=3
S
2
2
2
S
R

\__/

output.jpg:prediction.jpg
1

1
1
1
1
1
1
1
1 [ reprounzip docker download prediction ]
1
I
1
1
1
1

Figure 2: Packing (a) and unpacking (a) a computer vision
experiment with ReproZip.

environment variables; (iii) to remove big files that can be
obtained elsewhere; (iv) to remove sensitive or proprietary
information; or (v) to exclude software packages.

Package Generation. After tracing all the executions
from FE, analyzing the provenance data, and optionally edit-
ing the configuration file, the experiment package P can be
created by running reprozip pack. The package is a .rpz
file, which encompasses all the required data and informa-
tion for reproducing the traced execution (e.g., input files,
library dependencies, and binaries). P can then be sent to
others so that E can be reproduced.

Example. Figure 2(a) shows an experiment on Ubuntu that
predicts the values of hand-writing digits from an input im-
age and outputs a mew image with the predictions. Packing
this experiment is as easy as running two commands. While
the full VM takes 4GB, prediction.rpz has 67MB, which
is substantially lighter-weight for sharing.

2.2 Unpacking Experiments

Given P, E can be reproduced by using the command-
line tool reprounzip. Different unpackers are provided to
reproduce the corresponding experiment.

2.2.1 Unpackers

The choice of an unpacker depends on the OS S’ where
E will be reproduced: S’ can be either compatible with S
(S" = S), or completely different from S (S % S). An
example of the former is when S’ and S have compatible
Linux kernels, while the latter scenario happens when S’ is
a Windows or a Mac OS X machine. Portability is a sig-
nificant new feature of ReproZip, which previously could
only unpack and reproduce experiments across Linux sys-
tems; more specifically, we only supported what is now the
directory unpacker (see below) in our beta version [4].

S’ % S. There are two unpacking options: the vagrant and
the docker unpackers. The vagrant unpacker allows E to
be unpacked and reproduced inside a virtual machine auto-
matically created through Vagrant [25]. Therefore, E can be
reproduced on any system S’ supported by this tool. The
docker unpacker, on the other hand, unpacks and reproduces
E in a Docker [9] container, either on the researcher’s own
machine, a remote one, or on a cloud provider. In both
cases, ReproZip automatically selects a base system image
that is the closest to S, but researchers can also explicitly
choose their own.

S’ ~ S. ReproZip supports two additional unpackers: di-
rectory and chroot. The former unpacks E in a single di-
rectory: E can be reproduced directly from that directory.

It does so by automatically setting up environment vari-
ables (e.g., PATH, HOME, and LD_LIBRARY_PATH) that point
the experiment execution to the created directory, which
has the same structure as in the original system S. Note
that the created directory is not isolated from S’. In par-
ticular, should E use hardcoded absolute paths, they will
hit the host system instead. This unpacker is meant for
relatively well-behaved experiments that address files with
relative paths only.

In the chroot unpacker, similar to the directory one, a
directory is created from P. However, a full system environ-
ment is also built, which is then run with chroot, a Linux
mechanism that changes the root directory for E to the cre-
ated directory. Therefore, this unpacker works even in the
presence of hardcoded absolute paths. Note as well that
the unpacked software does not interfere with S’ since E is
isolated in that single directory.

ReproZip also has an option to natively install all the
software packages. In this case, when reproducing F, both
directory and chroot unpackers can use the installed depen-
dencies, instead of the ones copied from inside P.

Extensions. If researchers need to port E to a different
system not currently supported by ReproZip, they can eas-
ily create their own unpacker and attach it to the tool.
ReproZip was redesigned in a way that makes it easy to
create new extensions that will still support every package
created in the past.

2.2.2 Modules

The unpacking step, regardless of the unpacker, consists
of two main modules: Experiment Setup and Experiment
Reproduction (Figure 1).

Experiment Setup. First, given P, the experiment needs
to be extracted, and this is accomplished by running the
setup command. While, for the directory and chroot un-
packers, this command means copying F to a single direc-
tory (and creating a full system environment for the latter),
a virtual machine and a Docker container are initialized with
E for the vagrant and docker unpackers, respectively.

Experiment Reproduction. Once the package has been
extracted, E can be reproduced by using the run command.
The way E is reproduced depends on the chosen unpacker:
for directory, the execution happens inside the experiment
directory; for chroot, it happens inside the created file sys-
tem; and for vagrant and docker, it is done inside the virtual
image and the container, respectively. All the interaction
with E is done through reprounzip and its command-line in-
terfaces. Researchers do not need to know how to reproduce
E or even how to use Vagrant or Docker, since reprounzip
will perform the necessary steps automatically for them ac-
cording to the selected unpacker. Such command-line inter-
faces were nonexistent in ReproZip’s beta version.

Example. Figure 2(b) shows how to unpack—using the docker
unpacker—prediction.rpz on a Mac OS X machine. The

setup and run commands are the only steps necessary for

reproducing the original experiment. Additionally, the com-

mand download (Section 2.2.8) may be used for retrieving

the output file. The automatically-generated Docker image

has 500MB. When using the vagrant unpacker, the virtual

machine takes up 1.40GB, much lighter when compared to

the original one (4GB) since the former encompasses only

the files necessary for the reproduction.



2.2.3  File and Dataflow Management

Recall that input and output files are identified based on
heuristics. In the unpacking step, ReproZip uses this in-
formation to let researchers alter input files and retrieve the
output files after F is reproduced. The command showfiles
can be used to see which files are input and output, and the
commands upload and download can be used to replace an
input file and to retrieve an output file, respectively. This
makes it easy to reuse F, or evaluate it on different inputs.

ReproZip can also derive a specification of the experi-
ment workflow. The main programs of the experiment are
wrapped in workflow modules that automatically take the
command-line arguments and input files as inputs. Cur-
rently, ReproZip derives workflows that can be run on Vis-
Trails [11]. Using this system, (i) the dataflow of an experi-
ment can be understood; (ii) unpacked experiments can be
executed; (iii) researchers can explore experiments and try
different parameters and input files; and (iv) researchers can
extend the original workflow to explore different techniques
and perform analyses, or modify the dataflow to reuse steps
for their own research.

3. DEMONSTRATION

In our demonstration, we encourage visitors to bring their
own experiments in their Linux machines. They will:
e Install ReproZip on their machine S;

e Trace the execution of their experiment;
e Create a reproducible package;

e Transfer the package to a completely different machine S’
(either a Mac OS X or a Windows machine);

e Reproduce the experiment on S’ and modify its inputs;

e Generate a VisTrails workflow to visualize the experiment
dataflow and alter its pipeline.
In addition to the visitors’ own experiments, we will have
a number of real experiments from different domains avail-
able, including computer vision, visualization (e.g., interac-
tive and exploratory tools), and database research.

4. DISCUSSION AND FUTURE WORK

For experiments that run on Linux systems, ReproZip con-
stitutes a simple-to-deploy tool that makes an experiment
reproducible across different platforms and long after it was
created. Therefore, “It’s too difficult to reproduce” can no
longer be used as an excuse. We believe this greatly con-
tributes to scientific quality, allows researchers to reuse the
experiment and software produced by others, helps analyze
the pipeline and dependencies of an experiment, and even
helps industrial software developers deploy their software on
new OS’es.

Currently, ReproZip supports a wide range of experiments,
including client-server scenarios, experiments with databases,
and graphical and interactive tools. Also, if experiment F
is composed by multiple command-line executions (e.g., a
pipeline, or different execution paths), each execution can
be traced separately and the analyzed information can be
added to a single configuration file, so that all the execu-
tions are included in the same package P. When unpacking
P, researchers can select which runs to reproduce.

For future development, we are working on supporting
experiments that run on distributed environment (e.g., MPI
and Hadoop clusters). Also, we plan on supporting non-
Linux systems for the packing step.

8]

[9]
(10]

(11]

(12]

(13]

(14]

(15]

[16]

(19]
20]

21

23
24

25

REFERENCES

C. G. Begley and L. M. Ellis. Drug development:
Raise standards for preclinical cancer research.
Nature, 483(7391):531-533, 2012.

P. Bonnet et al. Repeatability and Workability
Evaluation of SIGMOD 2011. SIGMOD Rec.,
40(2):45-48, 2011.

Chef. https:
//www.chef.io/solutions/configuration-management/.
F. Chirigati, D. Shasha, and J. Freire. Packing
Experiments for Sharing and Publication. In SIGMOD
’13, pages 977-980, 2013.

C. Collberg, T. Proebsting, and A. M. Warren.
Repeatability and Benefaction in Computer Systems
Research. Technical Report TR 14-04, University of
Arizona, 2015.

S. B. Davidson and J. Freire. Provenance and
Scientific Workflows: Challenges and Opportunities.
In SIGMOD ’08, pages 1345-1350, 2008.

A. Davison. Automated Capture of Experiment
Context for Easier Reproducibility in Computational
Research. Computing in Science Engineering, 14(4):48
—56, july-aug. 2012.

D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M.
Chen. Eidetic systems. In OSDI’14, pages 525-540,
2014.

Docker. https://www.docker.com/.

D. Donoho, A. Maleki, I. Rahman, M. Shahram, and
V. Stodden. Reproducible research in computational
harmonic analysis. Computing in Science &
Engineering, 11(1):8-18, Jan.-Feb. 2009.

J. Freire, D. Koop, E. Santos, C. Scheidegger, C. T.
Silva, and H. T. Vo. The Architecture of Open Source
Applications, chapter VisTrails. Lulu Publishing, Inc.,
2011.

GenePattern. http://www.broadinstitute.org/cancer/
software/genepattern/.

P. Guo. CDE: A Tool For Creating Portable
Experimental Software Packages. Computing in
Science & Engineering, 14:32-35, 2012.

P. J. Guo and M. Seltzer. BURRITO: Wrapping Your
Lab Notebook in Computational Infrastructure. In
TaPP’12, pages 7-7, 2012.

Y. Janin, C. Vincent, and R. Duraffort. CARE, the
Comprehensive Archiver for Reproducible Execution.
In TRUST ’14, pages 1:1-1:7, 2014.

Madagascar. http://www.ahay.org/wiki/Main_Page.
MongoDB. http://www.mongodb.org/.

L. Murta, V. Braganholo, F. Chirigati, D. Koop, and
J. Freire. noWorkflow: Capturing and Analyzing
Provenance of Scripts. In IPAW, pages 71-83, 2015.
R. Nuzzo. How scientists fool themselves, and how
they can stop. Nature, 526(7572):182-185, 2015.

Q. Pham, T. Malik, and I. Foster. Using Provenance
for Repeatability. In TaPP ’13, pages 2:1-2:4, 2013.
Puppet. http://puppetlabs.com/.

C. Ruiz, O. Richard, and J. Emeras. Reproducible
Software Appliances for Experimentation. In Testbeds
and Research Infrastructure: Development of Networks
and Communities, volume 137, pages 33—42. 2014.
SystemTap. http://sourceware.org/systemtap/.

C. Tenopir, S. Allard, K. Douglass, A. U. Aydinoglu,
L. Wu, E. Read, M. Manoff, and M. Frame. Data
Sharing by Scientists: Practices and Perceptions.
PLoS ONE, 6(6), 2011.

Vagrant. https://www.vagrantup.com/.

P. Vandewalle, J. Kovacevic, and M. Vetterli.
Reproducible Research in Signal Processing. Signal
Processing Magazine, IEEE, 26(3):37-47, 2009.



