
ReproZip: Using Provenance to Support Computational Reproducibility

Fernando Chirigati
Polytechnic Institute of NYU

fchirigati@nyu.edu

Dennis Shasha
New York University

shasha@courant.nyu.edu

Juliana Freire
Polytechnic Institute of NYU

juliana.freire@nyu.edu

Abstract
We describe ReproZip, a tool that makes it easier for
authors to publish reproducible results and for reviewers
to validate these results. By tracking operating system
calls, ReproZip systematically captures detailed prove-
nance of existing experiments, including data dependen-
cies, libraries used, and configuration parameters. This
information is combined into a package that can be in-
stalled and run on a different environment. An impor-
tant goal that we have for ReproZip is usability. Besides
simplifying the creation of reproducible results, the sys-
tem also helps reviewers. Because the package is self-
contained, reviewers need not install any additional soft-
ware to run the experiments. In addition, ReproZip gen-
erates a workflow specification for the experiment. This
not only enables reviewers to execute this specification
within a workflow system to explore the experiment and
try different configurations, but also the provenance kept
by the workflow system can facilitate communication be-
tween reviewers and authors.

1 Introduction
Good science requires reproducibility, not only to dis-
cover fraud but also to support the reuse of experimental
techniques and software. Computational reproducibility
means that a program P running on computational envi-
ronment E at time T should yield the same answer on
environment E ′ at time T ′. Reproducing computational
results should be easier than laboratory results because
all the factors influencing a computational experiment
consist of software and data. Unfortunately, few compu-
tational experiments are reproducible. Results are often
described loosely through tables, plots and figure cap-
tions included in publications. Because no details of the
computational steps are given, it is difficult to verify and
reproduce many of the published results, and this has led
to a credibility crisis in computational science [2].

The main difficulty is that authors must generate a
compendium that encompasses all the inputs needed to

correctly reproduce their experiments. In order to re-
produce an experiment, we need detailed provenance
which includes [5, 3]: (i) a description of the data; (ii)
a complete specification of the experiment and its steps,
preferably as a workflow in which parameters and com-
putational tasks are explicitly defined; and (iii) informa-
tion about the originating computational environment E
(e.g., OS, hardware architecture, and library dependen-
cies) that may be needed if the experiment is to be re-
executed in a new environment E ′. These different pieces
of information need to be connected so that a complete
and executable description can be generated.

Keeping track of this information manually is rarely
feasible – it is both time-consuming and error-prone.
First, computational environments are complex, consist-
ing of many layers of hardware and software, and the
configuration of the OS is often hidden. Second, track-
ing library dependencies is challenging, especially for
large experiments. ReproZip aims to address these is-
sues by systematically and automatically capturing the
required information. The system does so by tracking
operating system calls that originate from an experiment
run. The information in these calls is then stitched to-
gether into a self-contained reproducible package, which
include all the binaries, data and dependencies required
to run a given command on the author’s computational
environment E. ReproZip also generates a workflow
specification for the experiment, which can then be used
to help reviewers explore and vary it. A reviewer can
extract the files and workflow in another environment E ′

(e.g., the reviewer’s desktop), without interfering with
any program or dependency already installed on E ′. The
experiments and their deterministic processes can then
be correctly reproduced and even modified in E ′. By
using the derived workflow to perform this exploration,
provenance of the review process is automatically cap-
tured, and can serve not only to document the process
but also as a means to support communication between
authors and reviewers.



2 Related Work
Reproducibility Tools. A number of tools have been
proposed to support the creation of reproducible exper-
iments. Some are aimed at a particular domain, for
example: GenePattern (http://www.broadinstitute.
org/cancer/software/genepattern) is a genomic anal-
ysis platform; Madagascar (http://www.ahay.org) is
used to analyze seismic data and supports multidimen-
sional data analysis; and Sumatra [1] is used for numeri-
cal computations. Scientific workflow systems [4, 9, 13],
on the other hand, are general and support the specifi-
cation of arbitrary computational experiments. Because
they have full control over the workflow execution, they
can capture detailed provenance of the data derivation
process. However, they do not capture the provenance of
the computational environment. Thus, even though they
support reproducibility, they do not support portability
to new environments [3]. Another drawback comes from
the fact that users must integrate the software they need
into the workflow system. This task can be time con-
suming and there is not much incentive to do so after an
experiment is complete, just for publication purposes.

Tools such as Chef (http://wiki.opscode.com/
display/chef) and Puppet (http://puppetlabs.com)
help users automate system configuration by creating
recipes that can be re-used every time a new machine
needs to be configured. Although these can help with
reproducibility by reconstructing the required configu-
ration, they can interfere with the reviewer’s computa-
tional environment, creating a gratuitous disincentive to
review. Virtual machines serve a similar purpose with
the additional advantage of portability across operating
systems, but the overheads of creating, storing and trans-
ferring the derived images can be high. CDE [7] of-
fers a lighter-weight alternative to virtual machines. It
relies on the ptrace call on Linux to identify the files re-
quired for running a particular command, and creates a
package containing these files. This package can then
be copied to different Linux installations where it can
be run within the CDE environment: CDE dynamically
changes the system calls to point to the correct files in-
cluded in the package. Although both ReproZip and
CDE trace operating system calls, they differ in signif-
icant ways: (i) with ReproZip, users have a greater con-
trol over the collected trace and can customize the repro-
ducible package; (ii) ReproZip captures and stores the
provenance in a database, which allows users to query the
information, and if the same experiment and configura-
tion need to be packed again, users need not re-run it; (iii)
ReproZip focuses on usability for authors and review-
ers – besides simplifying the creation of a reproducible
experiment, the system generates a workflow specifica-
tion for the experiment, which both facilitates the review
tasks and makes it possible to capture the provenance of

the review process; and (iv) CDE adds run-time over-
heads for executing a packaged experiment because it
dynamically changes system calls during the execution –
with ReproZip, once the package is extracted, there is no
interference in its execution, and therefore no run-time
overhead, thus supporting the validation of performance-
sensitive experiments.
System-level Provenance Tools. Tools have been
proposed that collect system-level provenance to pro-
vide a description of how data products were derived.
ReproZip also captures system-level provenance, but it
has a different goal: to attain reproducibility and porta-
bility, it uses this provenance to generate a compendium
that includes the necessary components required to run
a given experiment. Burrito [8] is a Linux-based sys-
tem that captures OS-level provenance for derived data
products and presents this information to users, who may
add annotations and generate an HTML report that sum-
marizes the computational activities. ES3 [6] uses
strace to monitor operating system calls and constructs
provenance graphs that resemble workflow specifica-
tions. These graphs describe the derivation of data prod-
ucts, but they are not executable. PASS [11] produces
audit trails that are stored in a database and that can be
queried. The system also generates a script to reproduce
a particular object. However, this script can be executed
only in the original environment.

3 Creating and Running Experiments
Packing. As illustrated in Figure 1, to create a repro-
ducible experiment in environment E that is invoked by
a program P (along with command line arguments), the
author simply prepends the command with ReproZip.
ReproZip makes use of two open-source tools to capture
the necessary provenance: SystemTap [12] and Mon-
goDB [10]. While the experiment is executed, System-
Tap traces system calls (execve, open, read, write, close
and pipe, to name a few). Through these system calls, it
is possible to capture information such as command-line
arguments, environment variables, files read and files
written. This information is then stored in MongoDB,
a NoSQL database, where it can be easily accessed and
queried. Our choice of SystemTap and MongoDB was
inspired by the Burrito System [8], which successfully
used these tools to gather and store provenance for pro-
grams run on Linux.

Using the trace data, ReproZip creates a provenance
tree of the experiment, where each node corresponds to
an OS process. The tree is built incrementally. The
root of the tree represents the main process of the ex-
periment which is specified by the user when ReproZip

is invoked. When a process corresponding to a node n
spawns a process n′ a new node is created for n′ and
an edge is inserted between n and n′. Each node in the



Figure 1: Creating reproducible experiments with
ReproZip.

tree stores provenance data for the corresponding pro-
cess, such as command-line arguments, working direc-
tory, files read, and files written. When the experiment
terminates, ReproZip traverses the provenance tree to
identify all the components involved in the execution and
that should be included in the reproducible package. It
collects the description of the data (input files and out-
put files), the description of the experiment (executable
programs), and the description of the computational en-
vironment (environment variables, library dependencies
and information about the system/hardware).

Note that SystemTap captures all dependencies, some
of which may not be necessary. Thus, before copying the
files to the reproducible package, ReproZip offers the
option to output a configuration file that lists all the iden-
tified programs, input files and dependencies. Authors
may customize the configuration to exclude a specific file
or a set of files (e.g., using Unix-shell style wildcards).
This step is particularly useful to control the size of the
package, for example, by discarding temporary files and
omitting large files that can be obtained elsewhere.

The provenance tree, together with the identified input
and output files, is also used to derive a workflow speci-
fication for the experiment. The main program of the ex-
periment is wrapped in a workflow module that automat-
ically takes the command-line arguments as inputs. By
making these arguments explicit in the workflow specifi-
cation, reviewers can immediately see which parameters
can be changed and should be considered for validating
the experiment.

ReproZip then creates the reproducible package that
contains the workflow as well as all the required compo-
nents from the author’s environment E, using the same
directory structure. The command-line arguments and
the environment variables in the workflow are config-
ured to reference the files that are inside the reproducible
package. A mapping between symbolic links and target
files is also added to the package, so that these links can
be correctly created in the unpacking step.

Figure 2a shows how the packing step derives a
provenance tree and a workflow specification for a real
experiment that verifies the topological correctness of
marching cubes algorithms, generating a reproducible
package1. As shown in the tree, the main program,
mc33verification, calls three other programs: analyze-
Grid, subdivideGrid and modifiedMC33. The prove-
nance information captured for each node is also used
to derive the workflow, in particular the input and output
files that connect the different programs.
Unpacking. Given an experiment created in environ-
ment E, a reviewer can unpack and run it in a new en-
vironment E ′. All the extracted files are placed in a user-
specified directory, i.e., no changes are made to other
directories in E ′. The workflow is pre-configured by
ReproZip so that paths to programs, input files, and
paths defined in environment variables are adjusted to
use the experiment directory in E ′. Environment vari-
ables are configured only for the workflow execution –
the original variables remain unchanged to avoid inter-
fering with the normal operating environment of E ′.
Verification and Exploration. After unpacking, users
can run the experiment and examine the results. In the
packing step, ReproZip captures what happens on a
run, and therefore, the experiment will be reproducible
if the process is deterministic – in case there is a non-
deterministic step (e.g., race conditions on the code that
may produce different outputs depending on processor
speed and system overhead), it is not possible to guaran-
tee that the original results will be reproduced.

The experiment can be executed from the command
line, and users may also run the derived workflow, which
can be run by the VisTrails system [4]. By using Vis-
Trails, users can leverage a host of features that simplify
validation and exploration. Because VisTrails provides a
visual representation of the experiment, where input and
output files are explicitly described, the reviewer can vi-
sually understand structure of the experiment. VisTrails
also provides an interface to perform parameter sweeps
and compare results side-by-side in a visual spreadsheet.
Reviewers can extend the original workflow to explore
different techniques or perform analyses (e.g., generate

1The resulting reproducible package had a size of around 40 MB,
which is significantly smaller than, for instance, a virtual machine snap-
shot containing the same experiment (about 3 GB running Ubuntu).



(a) (b)
Figure 2: Making an experiment reproducible. In the packing step, a provenance tree and a workflow specification are
derived (a). After unpacking, reviewers can extend the workflow to vary the experiment and view the results (b).

plots and other types of visualization) different from the
ones produced by the authors. Finally, because Vis-
Trails captures provenance of the verification process,
this provenance can serve as a means of communication
between reviewers and authors; for example, if reviewers
find an issue with a given parameter combination, they
can send the exact configuration back to the authors. Fig-
ure 2b illustrates the verification and exploration process
performed in the marching cubes experiment. The work-
flow is extended to derive a visualization, and the param-
eter sweep feature of VisTrails is also used to compare
results for multiple values for the isosurface. Examin-
ing the different isosurfaces enables the reviewer to ver-
ify the robustness of the marching cubes algorithm being
evaluated.

4 Conclusion
Good computational science requires reproducibility, but
the effort to achieve this has heretofore been significant.
Our system ReproZip simplifies this task. By combin-
ing features of scientific workflows and tools that trans-
parently and systematically capture the provenance of the
execution of the experiments, ReproZip not only sim-
plifies the process required to create reproducible experi-
ments, but it also helps reviewers to verify the results and
communicate their findings to the authors.

Although our initial evaluation has shown that
ReproZip is effective for a wide range of experiments in
different domains, there are some known limitations. For
instance, execution will fail in environment E ′ if binaries
are incompatible with the Linux kernel or hardware ar-
chitecture or when a given executable uses a hard-coded
absolute path. For such situations, our current approach
is to ReproZip together with virtual machines.

We look forward to the day when reproducibility be-
comes routine and researchers mix and match the work-
flows of automatically packed software environments to

create entirely new applications. ReproZip is a step in
that direction.
Acknowledgments. We thank Jesse Lingeman, Lis
Custódio and Tiago Etiene for providing their experi-
ments that we have used to test ReproZip. This work
has been partially funded by the National Science Foun-
dation grants CNS-1229185, IIS-1139832, IIS-1142013,
IIS-1050388.

References
[1] A. Davison. Automated capture of experiment context for easier

reproducibility in computational research. CISE, 14(4):48 –56,
2012.

[2] S. Fomel and J. Claerbout. Reproducible researh. CISE, 11(1),
2009.

[3] J. Freire, P. Bonnet, and D. Shasha. Computational reproducibil-
ity: state-of-the-art, challenges, and database research opportuni-
ties. In SIGMOD, pages 593–596, 2012.

[4] J. Freire, D. Koop, E. Santos, C. Scheidegger, C. Silva, and H. T.
Vo. The Architecture of Open Source Applications, chapter Vis-
Trails. Lulu.com, 2011.

[5] J. Freire and C. T. Silva. Making computations and publications
reproducible with vistrails. CISE, 14(4):18–25, 2012.

[6] J. Frew, D. Metzger, and P. Slaughter. Automatic capture and
reconstruction of computational provenance. CCPE, 20(5):485–
496, 2008.

[7] P. Guo. CDE: A Tool for Creating Portable Experimental Soft-
ware Packages. CISE, 14(4):32–35, 2012.

[8] P. J. Guo and M. Seltzer. Burrito: wrapping your lab notebook in
computational infrastructure. In TAPP, pages 7–7, 2012.

[9] B. Ludäscher and et. al. Scientific Workflow Management and
the Kepler System. CCP&E, 2005.

[10] MongoDB. http://www.mongodb.org/.
[11] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and

M. Seltzer. Provenance-aware storage systems. In USENIX,
pages 4–4, 2006.

[12] SystemTap. http://sourceware.org/systemtap/.
[13] Taverna. http://www.taverna.org.uk.


