
Data Polygamy: The Many-Many Relationships among
Urban Spatio-Temporal Data Sets

Fernando Chirigati∗, Harish Doraiswamy∗, Theodoros Damoulas?†, Juliana Freire∗
∗ New York University ? University of Warwick † Alan Turing Institute

{fchirigati,harishd,juliana.freire}@nyu.edu damoulas@warwick.ac.uk

ABSTRACT
The increasing ability to collect data from urban environments,
coupled with a push towards openness by governments, has re-
sulted in the availability of numerous spatio-temporal data sets cov-
ering diverse aspects of a city. Discovering relationships between
these data sets can produce new insights by enabling domain ex-
perts to not only test but also generate hypotheses. However, dis-
covering these relationships is difficult. First, a relationship be-
tween two data sets may occur only at certain locations and/or
time periods. Second, the sheer number and size of the data sets,
coupled with the diverse spatial and temporal scales at which the
data is available, presents computational challenges on all fronts,
from indexing and querying to analyzing them. Finally, it is non-
trivial to differentiate between meaningful and spurious relation-
ships. To address these challenges, we propose Data Polygamy, a
scalable topology-based framework that allows users to query for
statistically significant relationships between spatio-temporal data
sets. We have performed an experimental evaluation using over 300
spatial-temporal urban data sets which shows that our approach is
scalable and effective at identifying interesting relationships.

1. INTRODUCTION
Urban environments are the loci of economic activity and inno-

vation. At the same time, most cities face huge challenges around
transportation, resource consumption, housing affordability, and in-
adequate or aging infrastructure. The growing volumes of urban
data being collected and made available [3, 19, 26, 27, 32] open up
new opportunities for city governments and social scientists to en-
gage in data-driven science to better understand cities, make them
more efficient, and improve the lives of their residents.

Urban data is unique in that it captures the behavior of the differ-
ent components of a city over space and time: its citizens, existing
infrastructure (physical and policies), and the environment [20].
The availability of these data makes it possible to not only better
understand the individual components but also obtain insights into
how they interact. When an expert finds an unexpected pattern or
feature in a data set, other related data may help explain why and
under which conditions the pattern occurs. Consider the top plot in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: Variation of the number of taxi trips in NYC and its
relationship with wind speed.

Figure 1, which shows the number of daily taxi trips in New York
City (NYC) during 2011 and 2012. While the distribution of trips
over time is very similar for the two years, we observe two large
drops: one in August 2011 and another in October 2012. A natural
question is what might have caused these drastic reductions. By ex-
amining wind speed data (bottom plot in Figure 1), we discover that
these drops occur on days with unusually high wind speeds; here,
the high wind speeds were due to hurricanes Irene and Sandy. This
suggests a new hypothesis to be further investigated: high wind
speed leads to significant reduction in the number of taxi trips.

Besides enabling hypothesis generation, studying relationships
among data sets can also help with hypothesis testing. For instance,
the difficulty in finding taxis when it is raining is a notorious prob-
lem in Manhattan. One long-standing hypothesis to explain this
behavior is that taxi drivers set a daily income goal, and since there
is higher demand on rainy days, they reach their goal faster and stop
working earlier. Testing for the presence of such a relationship be-
tween data sets—in this case, NYC taxi data and weather data—can
help experts at the NYC Taxi and Limousine Commission (TLC)
frame appropriate policies to counter identified problems.
Relationship Discovery. In this paper, we define and take a first
step towards addressing the problem of discovering potential rela-
tionships between spatio-temporal data sets. We aim to guide users
in the data analysis and exploration process by allowing them to
pose relationship queries:

Find all data sets related to a given data set D.
To evaluate the above query, we have to first determine when and
how two data sets are related. Answering this question in the con-
text of urban data sets gives rise to several challenges. Urban data
can be large vertically, containing hundreds of millions to billions
of data points, and horizontally, consisting of several attributes [3].
As a point of comparison, five years of taxi data contains 780 mil-
lion trips [34], and the weather data set has over 200 attributes [35].

Also, there is a large number of urban data sets. NYC alone has
published over 1,300 data sets in the past two years [27], and this is
just a small fraction of the data collected by the city. Since a data set
can be related to zero or more data sets through multiple attributes,
there is a combinatorially large number of possible relationships.

This problem is compounded by the fact that these data sets con-
tain both spatial and temporal attributes at different resolutions. For
example, values for the weather attributes are collected at hourly in-
tervals (temporal resolution) for the whole city (spatial resolution).
In contrast, NYC taxi trips are associated with GPS coordinates
with time precision in seconds. Other data sets use spatial reso-
lutions at the level of neighborhoods or zip codes, and temporal
resolutions as daily, weekly, and monthly intervals. Since relation-
ships can materialize at any of these resolutions, they should be
evaluated at multiple resolutions.

The data complexity coupled with the sheer number of available
data sets and the combinatorially large number of possible relation-
ships make it hard for domain experts to comprehend the informa-
tion and the insights it can potentially offer. Of the several thousand
possible relationships between pairs of attributes in different data
sets, only a small fraction is actually informative. Unless known a
priori, looking for meaningful relationships between these data sets
is like, as the cliché goes, “finding a needle in a haystack”.

Another challenge in identifying a possible relationship lies in
defining the conditions implicating such a relationship. For exam-
ple, consider the wind speed data and the NYC taxi trip data de-
picted in Figure 1. There is no apparent relation between the two
data sets during the normal course of time: it is only when the wind
speed is abnormally high (in that case, due to hurricanes), that we
can see a connection with taxi trips. This is a common pattern ob-
served across urban data sets, where relationships become visible
only at spatio-temporal regions (locations in space and time) that
behave differently compared to the regions’ neighborhood.

Standard techniques, such as Pearson correlation coefficient [7]
or dynamic time warping [21], do not capture these relationships
because they ignore the spatio-temporal dependencies inherent in
the data and operate globally over the entire data (see Section 6.4).
Therefore, we need a method that captures the variation of the data
over space and time at different and arbitrary resolutions.
Our Approach. To address these challenges, we propose the Data
Polygamy framework. We introduce the notion of topology-based
relationships, where two data sets are related if there is a rela-
tionship between the salient features of the data. A salient fea-
ture corresponds to a spatio-temporal region that exhibits an un-
usual behavior with respect to its neighborhood. To efficiently iden-
tify salient features, we use and extend techniques from compu-
tational topology. Topology-based techniques are naturally suited
for studying properties of data involving spatial and geometric do-
mains (e.g., see [11, 28, 38]). To give some intuition for why and
how we apply topology, suppose we model a time step in an urban
data set as a terrain, where the height of each point of the terrain
represents the data value at that spatial location. In this case, the
variation over space is captured by the peaks and valleys of this ter-
rain. This can be extended to include time by modeling the data as a
high dimensional terrain. The salient features, which as mentioned
earlier correspond to spatio-temporal regions behaving differently
from their neighborhood, are inherently represented as tall peaks
and deep valleys. Topological methods provide efficient algorithms
to represent and compute such features. In addition, they can iden-
tify features that have an arbitrary spatial structure and straddle
multiple time intervals; they are also generic, in the sense that they
work on data having different dimensions and resolutions without
requiring any modification.

Given two data sets, to determine whether they are related, we
assess how similar their corresponding terrains are, i.e., the simi-
larities in the spatio-temporal variation patterns of the data sets. In
the Data Polygamy framework, this is accomplished in three steps:
1. Data Set Transformation. Each attribute of the two data sets is

transformed into a scalar function. A scalar function provides
a mathematical representation of the terrain corresponding to a
particular attribute of a data set.

2. Feature Identification. A topological data structure is computed
for every scalar function, which provides an abstract representa-
tion of the peaks and valleys of the scalar function. This struc-
ture is used as an index to efficiently identify salient features in
the data, which are defined based on thresholds that capture the
extent of normal behavior of the scalar function. We develop a
new method based on the notion of topological persistence [8]
to automatically compute these thresholds.

3. Relationship Evaluation. Possible relationships are then identi-
fied based on feature similarity. Our framework filters out re-
lationships that are not statistically significant. Since existing
Monte Carlo methods assume independence across samples, we
develop restricted Monte Carlo permutation tests that respect
data dependencies due to spatial and temporal proximity.

Users can then pose relationship queries over the resulting relation-
ships. Hypothesis generation is supported by querying for relation-
ships among all data sets, while a given hypothesis can be tested
by querying for relationships between the data sets involved in the
hypothesis. Sections 2, 3, and 4 provide the formal definitions and
describe the algorithms used in these stages. The end-to-end Data
Polygamy framework is presented in Section 5.

Because we consider a large number of urban data sets, each
containing many attributes, we need to compute thousands of scalar
functions and derive millions of relationships. However, both salient
feature identification and relationship querying are embarrassingly
parallel operations. In Section 5.4, we briefly describe a map-
reduce implementation of the Data Polygamy framework.

We demonstrate the efficiency and robustness of our framework
in Section 6 through an experimental evaluation using over 300
urban data sets of varying spatio-temporal resolutions. We also
present use cases demonstrating its effectiveness at identifying in-
formative relationships.

Note that our goal is to support users in the data exploration pro-
cess by helping them discover data sets that may be relevant for
their task—similar to a search engine that returns a set of poten-
tially relevant documents for a given keyword query. Users can
then use the identified relationships for further analysis, such as
testing for spurious relationships, testing for causality (e.g., to sup-
port a hypothesis), and generating new hypotheses.
Contributions. We define and propose a topology-based approach
to the problem of identifying relationships across a large number of
spatio-temporal data sets. Our main contributions are:
• We introduce the notion of topology-based relationships to de-

termine whether data sets are related through salient features.
• We develop a scalable framework that identifies salient features

based on the topology of the data, and a topology-based index
that provides an output-sensitive strategy to compute these fea-
tures: the time taken is linear in the size of the output. We
also propose an algorithm that automatically determines feature
thresholds in a data-driven fashion.

• We define the relationship operator, which returns the set of sta-
tistically significant relationships between two data sets. To de-
termine whether a relationship is significant, we develop a strat-
egy that applies Monte Carlo permutation tests and respects data
dependencies due to spatial and temporal proximity.

Figure 2: (a) A sample 1D scalar function. The labeled points
form the set of maxima (red) and minima (blue). (b) The super-
level set at f1 consists of four components. (c) The super-level
set at f2 consists of three components.
• We describe a scalable, map-reduce implementation of the Data

Polygamy framework.
• We perform an extensive experimental evaluation, using real and

synthetic data, which shows that our framework is robust, effi-
cient, and effective.

2. TOPOLOGY-BASED RELATIONSHIPS
In this section, we provide the required mathematical background

and define the terms used in this paper, which are based on concepts
from computational topology. We refer the reader to the following
textbooks [13, 24] for a comprehensive discussion on these topics.
We start by formally defining the concept of a topological feature
and topology-based relationships. Then, we propose two measures
to evaluate these relationships.

2.1 Topological Features
To discover relationships between two data sets, we first identify

the set of topological features of the scalar functions that represent
the data sets.
Scalar Functions. Let D be a data set, and A an attribute of D. To
identify the set of features with respect to the attribute A, we first
represent the attribute as a time-varying scalar function.

Definition 1. A scalar function f : S→ R maps points on a spa-
tial domain S onto a real value.

Definition 2. A time-varying scalar function f : [S×T]→Rmaps
points on a spatial domain across time onto a real value.

The spatial resolution of the data set D determines the structure
of the spatial domain S. For example, the NYC weather data set
provides information on different climate attributes, such as tem-
perature, precipitation, and wind speed. The values of these at-
tributes correspond to an hourly time period for the entire city, i.e.,
all the values correspond to the same spatial point. In this case, the
domain S×T of the time-varying scalar function is a simple time
series, i.e., a 1D function (0D in space and 1D in time). Figure 2(a)
and the two time series shown in Figure 1 are examples of 1D scalar
functions. On the other hand, the NYC taxi data consists of a set
of taxi trips, each containing the GPS coordinates for pick-up and
drop-off locations. From these data, we can obtain a distribution
of taxi trips over space and time by partitioning NYC into a set
of polygons (e.g., neighborhoods) and counting the trips that start
(or end) in each polygon at different time steps. This is a density
function, where the spatial domain is 2D, and thus the time-varying
scalar function is 3D (2D in space and 1D in time). Figure 3 shows
the density function at two different spatial resolutions for one time
step (i.e., one hour time period). The different scalar functions that
can be used to represent a data set are discussed in Section 5.1.

Irrespective of the temporal resolution, time always contributes
to one dimension in the time-varying scalar function. Unless oth-
erwise noted, we use the term scalar function to refer to a time-
varying scalar function corresponding to a (data set, attribute) pair.
Topological Features. Interesting features of a scalar function f
are captured by the critical points of f .

Figure 3: One time step (2D slice) of the 3D function repre-
senting the density of taxi trips in NYC at different resolutions.
Dark and light regions correspond to high and low trip density,
respectively. (a) NYC is represented using a high-resolution
grid and the density is provided for each cell of this grid. (b) A
lower resolution, at the level of neighborhood, is used.

Definition 3. Given a smooth function f , the critical points of f
are the points where the gradient becomes zero, i.e., ∇ f = 0.

We assume that the scalar function f is a Morse function [24]. A
Morse function has the property that (i) no two critical points have
the same function value; and (ii) there are no degenerate critical
points (i.e., ∇2 f , 0). Any function f can be made Morse via a
simulated perturbation of the function by an infinitesimally small
value such that no two points have the same function value [12]. We
provide a detailed discussion on Morse functions in Appendix B.1.

We are interested in two particular types of critical points, maxi-
mum and minimum, collectively known as extrema. Given a Morse
function, maximum and minimum points are defined as follows:

Definition 4. A point x is a maximum if f (x)> f (x′), ∀x′ ∈ N(x),
where N(x) defines the local neighborhood of x. Similarly, x is a
minimum if f (x) < f (x′), ∀x′ ∈ N(x).

The red and blue points in Figure 2(a) correspond to the set of
maxima and minima, respectively. We use the neighborhood of
critical points of a function to represent the topological features of
the data. The neighborhoods of the maxima and minima of f are
captured by the super-level and sub-level sets of f , respectively.

Definition 5. Given a scalar function f , the super-level set at
a real value θ is defined as f−1([θ,∞)), i.e., the pre-image of the
interval [θ,∞). The sub-level set at θ is defined as f−1((−∞, θ]).

In other words, the super-level set at a real value θ is the set of
all points on the domain of f having function value greater than
or equal to θ. For example, the super-level set of the function in
Figure 2(a) at function value f1 consists of 4 components (Fig-
ure 2(b)), while the super-level set at f2 consists of 3 components
(Figure 2(c)). Similarly, the sub-level set at θ is the set of all points
in the domain of f having function value less than or equal to θ.

We define two types of features—positive and negative—using
super-level and sub-level sets, respectively.

Definition 6. Given a feature threshold θ+, the set of positive
features is defined as the super-level set f−1([θ+,∞)).

Definition 7. Given an feature threshold θ−, the set of negative
features is defined as the sub-level set f−1((−∞, θ−]).
Feature Representation. The spatial domain S of D is represented
as a set of regions {s1, s2, . . . , sn} that partition the spatial extent of
D. Each region si corresponds to a polygon defined by the resolu-
tion used. For instance, the lowest resolution consists of the space
represented as a single region or polygon. By using smaller poly-
gons to partition the space, one could obtain a higher resolution
representation as shown in Figure 3(a). The temporal domain T is
represented as a set of time intervals {t, t +δ, t + 2δ, . . .}. The tempo-
ral resolution is defined by the value of δ. For example, when δ =

1 hour, the function is specified for hourly time steps.

Definition 8. A spatio-temporal point is represented by a (spa-
tial region, time interval) pair.

Topological features of f correspond to a set of spatio-temporal
points over the domain of f . Intuitively, they represent spatio-
temporal points where attribute A of data set D deviates from its
normal behavior, and capture the variation of A over both space
and time. Here, the thresholds θ+ and θ− define the extent of nor-
mal behavior of A. Salient features of the function can be identified
by appropriately setting the values of these thresholds. For exam-
ple, using the indicated values of θ+ and θ− in Figure 1, features
corresponding to the hurricanes are obtained. We describe an algo-
rithm to identify the appropriate values for θ+ and θ− in Section 3.3.

2.2 Feature Relatedness
Consider two scalar functions: f1(D1,A1) corresponding to at-

tribute A1 of data set D1, and f2(D2,B1) corresponding to attribute
B1 of D2. Without loss of generality, we assume that the two func-
tions have the same spatial and temporal resolution. Let Σ1 and Σ2
be the set of features of f1 and f2, respectively. Let Σ = Σ1

⋂
Σ2 be

the set of all spatio-temporal points that are features in both f1 and
f2. The possible relationships between two functions are defined
based on the relationship between their features.

Definition 9. Two functions f1 and f2 are feature-related at a
spatio-temporal point x = (s, t) if x ∈ Σ.

At points not in Σ, the two functions are not feature-related. Let
Σ+

i ⊂ Σi be a set such that ∀x ∈ Σ+
i , x is a positive feature. Similarly,

let Σ−i ⊂ Σi be the set of negative features.

Definition 10. f1 and f2 are positively related at a spatio-temporal
point x ∈ Σ if (x ∈ Σ+

1 and x ∈ Σ+
2) or (x ∈ Σ−1 and x ∈ Σ−2).

Definition 11. f1 and f2 are negatively related at a spatio-temporal
point x ∈ Σ if (x ∈ Σ+

1 and x ∈ Σ−2) or (x ∈ Σ−1 and x ∈ Σ+
2).

For instance, consider the features from Figure 1 correspond-
ing to the indicated thresholds. At the spatio-temporal point corre-
sponding to hurricane Sandy, there is a negative feature in the taxi
density function and a positive feature in the wind speed function.
The functions are therefore negatively related at that point.

2.3 Relationship Score and Strength
To assess the relationship between a given pair of functions, we

define the following two measures.
Relationship Score τ. We are interested in evaluating the overall
nature of the relationship between two functions, i.e., whether it
is always positive, always negative, or somewhere in between. To
do so, we define the relationship score τ between two functions
f1 (D1,A1) and f2 (D2,B1). Let Σ1 and Σ2 denote the set of features
of f1 and f2, respectively. As defined earlier, the set Σ = Σ1

⋂
Σ2

denotes the feature-relations between the two functions. Let #p and
#n be number of positive and negative feature relations in Σ. The
relationship score is defined as

τ =
#p−#n
|Σ|

(1)

A value of τ closer to +1 indicates that the two functions are posi-
tively related, while a value closer to −1 indicates that the functions
are negatively related.
Relationship Strength ρ. This measure is used to capture how fre-
quently features in two functions are related: the more frequently
the features are related, the stronger the relationship is. We model
the set of features as binary classifiers. Consider any spatio-temporal
point x ∈ Σ1. If x is also present in Σ, it is considered as a true pos-
itive. A point x is a false positive when x ∈ Σ1 and x < Σ. Similarly,

Figure 4: (a) Join tree of the function shown in Figure 2. The
edges are colored based on the descending path traversed from
the corresponding maxima illustrated in (b). πi denotes the per-
sistence of maximum vi.

x is false negative when x < Σ1 and x ∈ Σ. We then use the F1 score
to measure the relationship strength as

ρ = F1(f1, f2) = 2×
precision× recall
precision + recall

(2)

Note that precision gives a measure of how often features in f1
are related with features in f2, and recall gives a measure of how
often features in f2 are related with features in f1. Thus, a value
of ρ closer to 1 indicates a strong relationship between the two
functions, since a feature in one function almost always indicates a
feature in the other function as well. Similarly, a value of ρ close
to zero indicates a weak relationship.

3. MERGE TREE INDEX
We use a topological data structure called merge tree to effi-

ciently identify salient features corresponding to a scalar function.
In what follows, we give an overview of merge trees and introduce
a new algorithm to compute the features thresholds θ+ and θ−, a
crucial step in this process.

3.1 Index Creation
Recall that a super-level set (or sub-level set) of a scalar function

f at a given function value consists of multiple connected com-
ponents. Therefore, decreasing or increasing the function values
changes the topology, i.e., the number of connected components. A
merge tree tracks the evolution of super-level sets or sub-level sets
of f with changing function value. Formally, there are two types of
merge trees.

Definition 12. The join tree of f tracks the connected compo-
nents of the super-level sets of f with decreasing function value.

Definition 13. The split tree of f tracks the connected compo-
nents of the sub-level sets of f with increasing function value.

Consider the 1D function shown in Figure 2(a). At the highest
function value, a single super-level set component is created at v8.
As we decrease the function value, the number of components re-
main at one until the function value is equal to that of the v2. As
we keep decreasing the function value, two more components are
created at v4 followed by v6 (Figure 2(b)). However, when the func-
tion value reaches v5, the components created at v4 and v6 merge
into one component, reducing the number of components from 4
to 3 (Figure 2(c)). We stop this process when the function value
goes below v1 (the global minimum). At this point, there is a single
super-level set component composed of the entire domain. The join
tree tracks this evolution as a graph. Figure 4(a) shows the join tree
of the 1D function from Figure 2(a). The nodes of the graph cor-
respond to critical points where the number of components change,
while an edge represents the connected super-level set component
between its end points. For example, the edge (v2,v3) corresponds
to the green connected super-level set component in Figure 4(b).
The root node of a join tree is the global minimum of f , while the
non-root leaf nodes correspond to the set of maxima of f . Similarly,

the root node of a split tree corresponds to the global maximum
and its non-root leaf nodes correspond to the set of minima of f .
In order to compute merge trees, we first have to obtain a discrete
representation of a scalar function, which we describe next.
Scalar Function Representation. Consider the spatial domain of
a data set D consisting of regions {s1, s2, . . . , sn}. Let the tempo-
ral domain of D consist of m time steps {t1, t2, . . . , tm}. We create a
graph G = (V,E) to represent the spatio-temporal domain of D as
follows. Vertex vx,z ∈ V represents the spatio-temporal point cor-
responding to region sx at time tz. Thus, |V | = n×m. The edges
E = ES

⋃
ET are divided into two categories:

• spatial edges: ES = {(vx,z,vy,z) | sx adjacent to sy,∀z ∈ [1,m]}
• temporal edges: ET = {(vx,z,vx,z+1),∀x ∈ [1,n], z ∈ [1,m)}

Edges in ES connect adjacent regions of the space for each time
step, and edges in ET connect a region across adjacent time steps.

We use a piecewise linear (PL) function defined on G to represent
the scalar function f : the function is defined on the vertices of
G and linearly interpolated within each edge. The graph allows
a single representation to be used irrespective of the dimension of
the spatio-temporal domain, thus supporting different resolutions
and dimensions of the data.
Merge Tree Computation. The merge tree of a PL function can be
efficiently computed in O(N log N + Mα(M)) time using the union-
find data structure, where N and M are the number of vertices and
edges, respectively, in G. Since the spatial domains considered
in this work correspond to cities, the graph G representing these
domains is planar. Thus, M = O(N). The algorithm to compute
join trees is given in Procedure ComputeJoinTree (for more details,
see Appendix B.2). The split tree is computed analogously by using
the function f ′ = − f in this algorithm.

3.2 Querying Features
We use the join and split trees as indices to efficiently compute

the set of features, i.e., the super-level sets and sub-level sets, re-
spectively. Let θ be the feature threshold. The algorithm to compute
the super-level set f−1([θ,∞)) using the join tree JT is as follows:

1. Identify the set V+ = {v | v is a maximum and f (v) ≥ θ}. This is
accomplished by going over the non-root leaf nodes of JT .

2. Set Σ+ = ∅.
3. While V+ , ∅

(a) Remove v from V+ and add to Σ+.
(b) Let L− = {u| f (u) ≤ f (v) and u is adjacent to v}.
(c) Add u ∈ L− to V+ if θ ≤ f (u).

4. The set Σ+ contains the vertices of G that belong to the super-
level set at θ.

The algorithm performs a descending path traversal of adjacent ver-
tices from the set of valid maxima (having function value greater
than θ) until the required threshold is reached. The colored regions
in Figure 4(b) indicate the descending paths followed by the algo-
rithm starting from the different maxima of the function shown in
Figure 2(a). This is analogous to traversing down the edges of the
join tree. The sub-level set at θ is computed similarly, through an
ascending path traversal starting from the minima of the function.
Time Complexity. Since the vertices of G are sorted when comput-
ing the join (or split) tree, the critical points of the function are also
stored in sorted order. Thus, the number of comparisons required to
identify V+ (or V−) is |V+| (or |V−|). Each descending (or ascend-
ing) path traversal stops as soon as it reaches a vertex u that is not
a feature. Thus, the number of vertices touched during querying is
O(Σ+) (or O(Σ−)). In other words, given the join and split trees,
feature identification for a given threshold is output-sensitive.

Procedure ComputeJoinTree
Require: Graph G(V,E), Function f
1: Sort V in descending order of f
2: for each v ∈ V do
3: L+ = {u|(v,u) ∈ E and f (v) < f (u)}
4: C = {Component(u)|u ∈ L+}
5: if |C| = 0 then /* v is a maximum and creator */
6: Create a new join component CJ
7: Set Head(CJ) = v, Creator(CJ) = v
8: else if |C| = 1 then /* v is not critical */
9: Add v to C

10: else /* v is a destroyer, |C| = 2 for Morse functions */
11: Let C = {C1,C2}, f (Creator(C1)) < f (Creator(C2))
12: Merge Components CJ = C1

⋃
C2

13: Let u1 = Head(C1), u2 = Head(C2)
14: Add edges (u1,v) and (u2,v) to Join Tree JT
15: Set Creator(CJ) = Creator(C1), Head(CJ) = v
16: Pair Creator(C2) with destroyer v
17: end if
18: end for
19: return Join Tree JT

3.3 Feature Threshold Computation
Intuitively, our goal is to classify topological features not adher-

ing to normal behavior as salient features. We are also interested in
identifying extreme features, which correspond to outliers among
salient features. For instance, the extremely high wind speeds dur-
ing a hurricane correspond to extreme features

While users with domain knowledge can provide thresholds for
computing features, this might not be feasible over all data sets.
Thus, we devise a data-driven approach to identify the required
thresholds, θ+ and θ−. Our approach is inspired by the persistence
diagram [8], which is commonly used in scientific visualization
applications to visually identify meaningful thresholds [11]. How-
ever, instead of relying on users to visually select thresholds, we
develop an algorithm to automatically identify them.
Topological Persistence. Consider a sweep of the function f in
decreasing order of function value. As mentioned earlier, the topol-
ogy of the super-level set changes at critical points during this sweep.
In particular, at a critical point, either a new super-level set compo-
nent is created (maximum) or an existing super-level set compo-
nent is destroyed. A critical point is a creator if a new component
is created, and a destroyer otherwise. Again, consider the exam-
ple in Figure 4. At critical point v5, the components created at v4
and v6 are merged into one. In this case, the component created
last, at v6, is considered to be destroyed at v5. Similarly, one can
pair up each creator c1 uniquely with a destroyer d1 that destroys
the topology created at c1. Note that this pairing can be accom-
plished while computing the merge tree itself (Line 16 in Proce-
dure ComputeJoinTree). The persistence value of c1 and d1 is de-
fined as | f (d1)− f (c1)|, which indicates the lifetime of the feature
created at c1. Figure 4(b) illustrates the persistence values of the
different critical points (as πi) together with the creator-destroyer
pairs. Intuitively, the persistence of a maximum (minimum) is
equal to the height (depth) of the corresponding peak (valley).
Thresholds for Salient Features. The persistence diagram [8, 14]
plots the extrema (maxima or minima) of the input function as a
set of points on a 2D plane, where the x and y coordinates of a fea-
ture correspond to its creation and destruction value, respectively.
Figure 5(a) shows the persistence diagram of the minima of the
taxi-density function from Figure 1 corresponding to one month in
the data. Note that the minima are clearly split into two groups:
those with high persistence (enclosed by the circle) and those with
low persistence. This split becomes even more prominent when we
plot just the persistence values (Figure 5(b)). A minimum (maxi-

mum) with a higher persistence value is considered important since
the sub- (or super-) level set component created at that extremum
has a longer lifetime. Our goal is to select a threshold θ− such that
all the high persistence minima are identified as salient. To do this
automatically, we perform k-means clustering with k = 2 and use
the highest value over all minima in the high persistence cluster as
the threshold θ−. This ensures that all the high-persistence minima
will have function value less than or equal to θ−, and will hence be
identified as salient features. θ+ is identified in a similar manner
using the persistence of the set of maxima.
Thresholds for Extreme Features. Typically, a minimum (maxi-
mum) corresponding to an extreme feature will have function value
that is significantly smaller (larger) than those corresponding to
salient features. For example, in Figure 5(c), the function value
of minima corresponding to the extremely low number of taxi trips
in NYC between 2009 and 2013 is significantly different from the
function value of other minima (corresponding to salient features).
In order to identify the appropriate thresholds, we first compute the
minima (or maxima) across all time steps that correspond to salient
features. Next, we identify the outlier threshold from this distribu-
tion. We use the standard box plot thresholds, i.e., Q1 −1.5× IQR
for minima (Q3 + 1.5× IQR for maxima), as the required thresh-
olds, where Q1 and Q3 are the first and third quartile, and IQR is
the inter-quartile range. The box plot (and the corresponding out-
lier threshold) for the extreme negative features corresponding to
the taxi density function is illustrated in Figure 5(c).
Adjusting for Seasonal Variations. Processes in a city are typi-
cally dependent on the time of year. For example, zero depth of
snow during summer is normal, while this could indicate an impor-
tant phenomena during the winter. Thus, it is important to take into
account seasonal variations when computing features. Depending
on the temporal resolution, the time range of a data set is divided
into smaller intervals, and the threshold for a given interval is com-
puted based on the persistence of the extrema present in that inter-
val. For example, we could use monthly or quarter-yearly intervals.

4. RELATIONSHIP OPERATOR
In the previous sections, we discussed how relationships between

functions are identified and measured. We now define the relation-
ship operator, relation(D1,D2), used to compute the relationship
between data sets D1 and D2. Let D1 be represented by n func-
tions { f1, f2, . . . , fn}, and D2 by m functions {g1,g2, . . . ,gm}. There
are n×m possible relationships between the two data sets. Since
many of these relationships could be due to random chance, the
relationship operator returns the set of statistically significant rela-
tionship pairs (fi,g j) together with their corresponding relationship
score and strength.

To assess the statistical significance of a potential relationship
pair (fi,g j), we design Generalized Monte Carlo significance tests
[5, 15, 18]. Let Σ1 and Σ2 be the features corresponding to fi and
g j, respectively. The null and alternative hypothesis are:
H0: The two functions fi, g j are independent in their features Σ1,Σ2.
H1: The two functions are dependent in their features.
We examine if we can reject the null hypothesis and accept H1 for
any pair of functions based on the identified features and their cor-
responding relationship score. The p-value from the Monte Carlo
randomization test with test statistic x∗ is given by:

p = P(X ≤ x∗|H0) =

∑N
i I(xi ≤ x∗)

N
as N→∞ (3)

where I(·) is the indicator function and N the number of permuta-
tions on the input. Given a significance level α, the p-value is then
used to define a statistically significant relationship as follows:

Figure 5: (a) The persistence of a minima in a persistence di-
agram is the height above the x = y line. (b) A scatter plot of
the persistence of the minima. (c) When considering only nega-
tive features across all time intervals, note that function values
corresponding to extreme features (e.g., during hurricanes) are
outliers of the distribution.

Definition 14. The relationship between two functions fi and g j
is statistically significant if p ≤ α.

Urban data sets have spatial and temporal dependencies (e.g.,
due to neighborhood and seasonal effects) that need to be accounted
for when designing randomization tests. It is well-known in the
statistics literature that, if we ignore these dependencies, a simple
Monte Carlo procedure for assessing statistical significance would
fail and lead to erroneous claims [5, 23]. To account for the spatio-
temporal correlation, a plethora of Monte Carlo and Bootstrap tech-
niques have been developed over the last decades ranging from the
block-bootstrap [22] to general restricted Monte Carlo techniques
[18, 23] such as the one we propose in this paper.
Restricted Monte Carlo Tests for Spatial Correlation. We de-
velop restricted permutation tests that respect the degree of spatial
correlation of our data sources. This is typically achieved by de-
signing toroidal shifts, where a function f is wrapped around a
two-dimensional torus by connecting the margins, or spatial ex-
tents, of the data. Then, a linear map m—that maps the torus onto a
rotation of itself—will yield a new randomization that still respects
any horizontal interactions [18, 23].

However, given the irregular structure of a city, which is an arbi-
trary non-convex polygon, wrapping the spatial region over a torus
is not straightforward. If we consider the spatial domain as a graph,
a toroidal shift basically ensures that the adjacency of the non-
boundary vertices are maintained. We make use of this observation
to devise a toroidal shifting strategy that is applicable to arbitrary
graphs. Given a graph G representing the spatial domain, we define
the map mi : G→ G as follows. We start with a random mapping
mi(u) = v. The adjacent vertices of u are then assigned the ver-
tices adjacent to v where applicable. This process is repeated in
a breadth-first fashion. This process ensures that, in most cases,
the distance between two vertices in G is the same as the distance
between them in mi(G). Using the above mapping, the restricted
Monte Carlo test now becomes:

p =

∑|m|
k I(τ(fi,g j)k ≤ τ(fi,g j)∗)

|m|
(4)

where τ(fi,g j)k is the relationship score between the two functions
fi,g j in toroidal shift k, and |m| is the total number of toroidal shifts,
which affects the power of the statistical test (we use |m| = 1,000).
Restricted Monte Carlo Tests for Temporal Correlation. For
1D functions that are purely temporal and have no spatial domain,
we wrap time to a one-dimensional torus while rotating the result-
ing circle to obtain randomizations that respect temporal correla-

tions [18]. We then proceed similarly to Equation 4. Unless oth-
erwise mentioned, a relationship implies a statistically significant
relationship for the remainder of the paper.

5. DATA POLYGAMY FRAMEWORK
In this section, we describe the data polygamy framework. We

start by presenting the scalar functions that are derived from a
given data set and how the framework handles different resolutions.
Then, we discuss how the data is indexed and queries are evalu-
ated. Finally, we briefly describe a map-reduce implementation of
the framework.

5.1 Types of Scalar Function
Consider a data set D having attributes {K,S ,T,A1,A2, . . . ,Ak}.

Let K be an optional unique identifier; S and T be the spatial and
temporal attributes, respectively; and Ai,1 ≤ i ≤ k be numerical at-
tributes. We are interested in identifying scalar functions that not
only capture the activity of the objects represented by the data sets,
but that also that capture the different properties corresponding to
the attributes. For instance, when considering the taxi data, the
number of taxis in different locations over time captures the activity
of the taxis, while the attribute corresponding to the fare captures
fare patterns over time and space. We therefore derive two types
of scalar functions to represent D: count functions and attribute
functions. Possible extensions to other types of scalar functions are
discussed in Section 8.
Count Functions. Count functions are used to capture the activity
of the entity represented by the data set. More formally, consider
a spatio-temporal point (s, t). Let Γ be the set of tuples in D such
that S (r) = s and T (r) = t, ∀r ∈ Γ. Here, S and T represent the
spatial and temporal attributes of a tuple r. We define two types of
count functions: density and unique. The density function assigns
the value |Γ| to the spatio-temporal point (s, t). For example, the
density function of the taxi data assigns the number of trips origi-
nating at s during the time period t to the point (s, t). The unique
function assigns a value equal to the number of unique identifiers
of Γ to the spatio-temporal point. For instance, each tuple in the
taxi data consists of an identifier corresponding to the medallion of
the taxi. Thus, the number of unique medallions in Γ is essentially
the number of unique taxis that are present at s during time t. Note
that there is one unique function corresponding to each identifier
attribute of the data set.
Attribute Functions. For a given attribute A, the attribute function
assigns the average value of A(r) over all tuples r ∈ Γ to the cor-
responding spatio-temporal point (s, t); the function represents the
variation in the properties of a given attribute over space and time.
Handling Different Data Resolutions. It is important that our
framework identifies relationships that occur at different resolu-
tions. As illustrated in Figure 6, these resolutions are represented as
a directed acyclic graph (DAG), where the edges are directed from
a higher resolution to a compatible lower resolution. The compat-
ibility indicates the ability to convert the data from a higher reso-
lution to a coarser resolution. For example, GPS resolution can be
transformed into all of the other resolutions. On the other hand,
neighborhood and zip-code resolutions, being incompatible, can be
converted only into the city resolution. To evaluate the relationship
between two functions having different resolutions, we first trans-
form both functions into the same compatible resolution, and then
evaluate the two functions at this resolution.

5.2 Indexing and Feature Identification
Given a data set D, we first compute all possible scalar functions

(i.e., count and attribute functions) of D that cover every viable

Figure 6: Hierarchical relationship for spatio-temporal resolu-
tions represented by DAGs. Resolutions depicted using solid
lines are used for evaluating relationships.

spatio-temporal resolution. For example, if D is available at a spa-
tial resolution of GPS locations and temporal resolution of second,
then each attribute can be aggregated into 3 spatial resolutions (i.e.,
zip code, neighborhood, and city) and 4 temporal resolutions (i.e.,
hour, day, week, and month), thus resulting in a total of 12 spatio-
temporal resolutions for which the scalar functions are computed.
The merge tree index is then built for each scalar function. This
ensures that all resolutions are considered when executing a rela-
tionship query. Recall that the computation of feature thresholds
takes seasonal variations into account (Section 3.3). In particular,
we use monthly and quarter-yearly intervals when the temporal res-
olution is hourly and daily, respectively. Since thresholds are fixed
for a given function, to speed up query evaluation, we pre-compute
and store the features (salient and extreme).

5.3 Query Evaluation
Let D = {D1, ...,Dn} be the corpus of data sets that have been

indexed. We support the general form of the relationship query:
Find relationships betweenD1 andD2 satisfying clause

In this query, D1 and D2 are collections of data sets such that
D1 ⊆D andD2 ⊆D. IfD2 = ∅, it is assumed thatD2 =D. When
a relationship query is issued, the relation operator is applied to all
pairs (Di,D j) of data sets, such thatDi ∈D1, D j ∈D2, andDi ,D j.
The operator uses the pre-computed set of features to assess the re-
lationship between the data sets. Note that, when considering a pair
of functions, the relationship between them is evaluated for all pos-
sible resolutions starting with the highest common resolution. For
example, if the spatial resolutions of two functions are neighbor-
hood and zip code, then their relationship is evaluated at the city
scale for different possible temporal resolutions. This evaluation is
performed for both salient and extreme features.

Computing relationships at different resolutions is important as
scalar functions may relate differently depending on how they are
aggregated. For example, an hourly resolution might capture varia-
tions within a day, but could miss significant variations across dif-
ferent days, which can be captured using a daily resolution (see
Section 6.3 for an example).

The query returns related scalar function pairs that are statisti-
cally significant, together with the resolutions for which the rela-
tionships hold. The significance level α is set at the commonly
used value of 5% [15]. In the clause for a query, optional condition
parameters can be specified to filter relationships satisfying a min-
imum score τ and/or strength ρ. Feature thresholds for computing
salient and extreme features can also be optionally specified as part
of the clause if the user is familiar with any of the data sets. When
these thresholds are specified, features are first identified using the
merge tree index before evaluating the relationship.

5.4 Implementation
Given a large number of data sets, such as the urban data sets

with which we experimented (Section 6), thousands of scalar func-
tions have to be computed, and the number of relationships to be
evaluated during querying is in the order of millions. However,
the indexing and querying operations can be run independently
for each scalar function and scalar function pair. To leverage the
embarrassingly parallel nature of these computations, we imple-

Table 1: Properties of the data sets in the NYC Urban collection.
Data Set Data

Size
Records Time Range # Scalar

Functions
Spatial

Resolution
Temporal
Resolution

Description

Gas Prices 13 KB 749 2000–2014 2 City Week Average gasoline price in dollars per gallon for NYC
Vehicle Collisions 47 MB 330 K 2012–2014 11 GPS Second Traffic collision data provided by NYPD
311 Complaints 574 MB 7.40 M 2003–2014 1 GPS Second Records from 311, a telephone number that provides

non-emergency services to the city
911 Calls 2.2 GB 6.75 M 2012–2013 1 GPS Second Records from 911, a telephone number that provides

emergency services to the city
Citi Bike Data 1.6 GB 10.40 M 2013–2014 5 GPS Second Trip data from NYC’s bike sharing system
NCEI Weather Data 304 MB 64 K 2010–2014 228 City Hour Comprehensive weather data from NCEI
Traffic Speed 17 GB 395 M 2009–2012 2 GPS Hour Average speed in the streets of Manhattan
Taxi Data 108 GB 868 M 2009–2013 13 GPS Second Trip data from taxicabs provided by NYC TLC
Twitter 656 GB 1.10 B 2012–2014 5 GPS Second Data obtained from Twitter’s public streams

(a) City (b) Neighborhood
Figure 7: Merge tree index creation and feature querying time.

mented the framework using map-reduce. We use three map-reduce
jobs: 1. Scalar Function Computation generates all possible scalar
functions at different resolutions; 2. Feature Identification creates
the merge tree indexes and identifies the set of features of the dif-
ferent functions; and 3. Relationship Computation evaluates the re-
lationships between the pairs of functions corresponding to a given
query. Implementation details can be found in Appendix C and the
released code.1

Space Overhead. The space required to store a scalar function
for a given resolution is equal to the number of vertices in the
graph G representing the domain. For a resolution at the city level
and hourly intervals, this corresponds to the number of time steps,
which is approximately 35 KB (365×24 float values) per year. For
higher spatial resolutions, the space required to store the function
is approximately n× 35 KB, where n is the number of polygons
used to partition the domain. For example, in NYC, for zip code
and neighborhood resolutions, n ≈ 300. Typically, the space over-
head to store scalar functions over all resolutions is significantly
less than the original data itself. As a point of reference, the 5 years
of the raw taxi data takes up 108 GB of space. In contrast, the 13
possible scalar functions over 8 resolutions uses only 417 MB. The
size of the merge tree index is proportional to the number of crit-
ical points of the function. While the number of critical points is
bounded by the size of the input graph in the worst case, in practice
it is significantly smaller. Similarly, even the number of features,
while being bounded by the size of the input graph, is usually much
smaller. For example, storing all features (salient and extreme) for
the taxi data over all different resolutions takes only 8 MB.

6. EXPERIMENTAL EVALUATION
We have performed an extensive evaluation to assess different

aspects of the Data Polygamy framework. We carried out a con-
trolled experiment to quantitatively evaluate the correctness and ro-
bustness of the relationship operator, and we also used real-world
data sets to study efficiency and effectiveness characteristics. Ef-
ficiency was measured to show the feasibility of computing rela-

1URL of the code is withheld due to the double blind requirement.

(a) NYC Urban (b) NYC Open
Figure 8: Performance of feature indexing and identification.

tionships over a large number of data sets. Effectiveness was eval-
uated in two different ways: to demonstrate that the framework is
able to prune spurious relationships, thus reducing the exploration
space presented to users, and to show that our approach uncovers
interesting, non-trivial relationships. We also analyzed the rela-
tionships obtained from standard correlation techniques and discuss
their shortcomings in identifying interesting relationships.
Experimental Setup. We used Apache Hadoop 2.2.0 and Java
1.7.0. The map-reduce jobs were executed on a cluster with 20
compute nodes, each node having an AMD Opteron(TM) Proces-
sor 6272 (4x16 cores) running at 2.1GHz, and 256GB of RAM.
Data Sets. We used two collections of data sets in our experiments.
The NYC Urban collection consists of nine urban data sets ob-
tained from different NYC agencies or gathered through publicly-
available APIs. These data sets have been used by various domain
experts (mostly in isolation) for different analyses (see, e.g., [6, 17])
and are thus useful to evaluate the effectiveness of our framework at
identifying meaningful relationships. Table 1 describes these data
sets and their properties. They vary in size from a few KBs to hun-
dreds of GBs, and have different temporal and spatial resolutions.

The second collection, referred to as NYC Open, was primarily
used to test the performance of our framework. It consists of 300
spatio-temporal data sets from NYC Open Data [27]. Even though
most of these data sets are relatively small in size (less than 1 GB),
the sheer number of data sets and the number of attributes they
contain (on average, 8 attributes per data set) results in over 2.4
million possible relationships for a single resolution.

Each data set in these collections consists of a set of tuples hav-
ing metadata about the spatial, temporal, and numerical attributes
as well as keys. We use this metadata to perform an additional pre-
processing step that selects data corresponding to these attributes
and feeds it to the scalar function computation module.

6.1 Performance Evaluation
Indexing and Feature Identification. To assess the efficiency of
feature identification and indexing, we studied the performance of
the merge tree index for a single data set as well its behavior for an
increasing number of data sets. Figure 7 plots the running times to

(a) NYC Urban (b) NYC Open
Figure 9: Query performance.

create the index and query for features for the Taxi data (using its
density function), for both city (1D) and neighborhood (3D) resolu-
tions. Here, we used a single node in the cluster. The plots indicate
that the time for creating the merge tree and identifying features is
almost linear in the size of the function (i.e., number of edges in
the spatial domain graph). Note that the indexing time includes the
creation of both join and split trees, and the querying time includes
the computation of thresholds as well as the identification of neg-
ative and positive features. Even for an input having more than 30
million edges, the operations took less than 2 minutes. This shows
that our approach is scalable and able to handle large data sets.

The indexing component also performs well as the number of
data sets increases. This is shown in Figure 8. The numbers on the
bars indicate the total number of computations performed. Recall
that scalar functions are computed for all attributes at all spatio-
temporal resolutions. When using NYC Urban (Figure 8(a)), the
large increase in time when moving from 3 to 4 data sets was due
to the 4th data set, the Taxi data, which is not only large but also
contains many attributes. It also has the highest resolution both in
space and time, requiring each scalar function to be computed over
all resolutions. There was also a significant increase in the number
of computations when the Weather data set was introduced (the 8th

data set): this data set has 228 numerical attributes. However, since
it is relatively small compared to other data sets in NYC Urban, the
running time was not significantly affected.

For NYC Open (Figure 8(b)), the time taken to identify the fea-
tures was significantly larger than that for computing the scalar
functions. This behavior differs from what we observed for NYC
Urban due to two reasons: (1) the data sets in this collection are
much smaller; (2) most of the 3D data sets in NYC Open are al-
ready in zip code resolution, making it faster to compute the scalar
functions; in contrast, tuples in the 3D NYC Urban data sets are
GPS points, which required additional computations to aggregate
into the neighborhood and/or zip code resolutions. The total time
taken to compute the indexes and features for all data sets in NYC
Urban and NYC Open was about 1 hour and 4 hours, respectively.
Query Performance. To test the efficiency of the querying compo-
nent, we executed a series of queries that identify the relationships
between a fixed number of data sets. Figure 9 plots the relationship
evaluation rate with increasing number of data sets. Using both
collections, NYC Urban and NYC Open, we were able to consis-
tently evaluate relationships at a rate greater than 104 relationships
per minute. The evaluation rate stabilized once the number of rela-
tionships increased above this number, e.g., with the addition of the
Weather data (data set 8) in Figure 9(a). A total of 290 thousand
relationships were evaluated when the query used all data sets from
NYC Urban; for the NYC Open, this number was 17.4 million. The
constant rate, irrespective of the data set pairs, indicates that re-
lationship evaluation is independent of size and resolution of the
original data. This can be attributed to the abstraction of the data as
functions. Note that over 90% of the querying time is spent on the
statistical significance tests, which involve re-evaluating each rela-

(a) NYC Urban (b) NYC Open
Figure 11: Relationship pruning.

tionship for 1,000 random spatial or temporal permutations. Also,
the queries executed did not include any filtering clause. When us-
ing a clause C, the query evaluation step skips the significance test
when C is not satisfied, which further improves the performance.

Figure 10: Speedup

Scalability. To test the scalability
of our framework, we computed
the speedup attained by the differ-
ent components with increasing
number of nodes in the cluster.
This experiment was performed
on Amazon Web Services (AWS)
using the NYC Urban collection.
We used AWS because it allows
the configurations of clusters of
different sizes. Each node in the
cluster had an Intel Xeon E5-2670 v2 processor (8-core) and 61GB
of RAM. Figure 10 shows the speedup for the three components of
the framework, which was computed against the the time taken by
a single node. A relatively lower speedup was attained for identi-
fying features and evaluating relationships than for the scalar func-
tion computation. This is primarily due to the presence of straggler
reducers that deal with higher spatio-temporal resolutions, thus in-
creasing the computation time for the randomization tests.
Relationship Pruning. Figure 11 plots the the number of identi-
fied relationships (in log scale), when considering the (week, city)
resolution, with increasing number of data sets. For the data sets in
NYC Urban (Figure 11(a)), there was a significant decrease in the
number of relationships—from 9,745 to 137, a decrease of about
98.60%. If we filter relationships having τ ≥ 0.6 and τ ≥ 0.8, the
reduction further increased to 99% and 99.20%, respectively. When
handling a larger number of data sets, such as NYC Open, the
advantages of our framework become even more evident, as Fig-
ure 11(b) shows. Given the over 2 million possible relationships
for the (week, city) resolution, our framework identified 22,327 of
them to be statistically significant, which corresponds to a decrease
of about 98.90%. Although the number of identified relationships
is still large, this is significantly better than trying to make sense of
over 2 million relations. In addition, we envision that users will ex-
plore these relationships by searching, querying, and filtering them
based on different attributes (e.g., τ, ρ, α, space, and time).

6.2 Correctness and Robustness
Correctness. Most urban data sets have become available only re-
cently and work on integrating them is still incipient [3]. Since
there are no ground-truth benchmarks that can be used to evaluate
the correctness of the identified relationships, we used prior knowl-
edge about the data sets and designed a controlled experiment to
test if our technique can uncover strong relationships that are ex-
pected to occur. Consider the Taxi data in Figure 1. The density
functions for taxi trips in 2011 and 2012 have a similar behavior:
the number of trips in the city over time follows a similar pattern
over the two years, except in specific situations, such as during ex-

treme weather conditions. Thus, if each year of data is modeled as
a function (starting at the same day and time), a strong positive re-
lationship should be observed for the two functions. This observa-
tion was used to test our technique, which indeed identified the two
functions to be strongly and significantly related across different
resolutions. The relationship score and strength for the (hour, city)
and the (hour, neighborhood) resolutions were (τ = 0.99, ρ = 0.85)
and (τ = 1, ρ = 0.87), respectively.
Robustness. To assess the robustness of our technique in the pres-
ence of noise, we fixed a scalar function f , and by artificially intro-
ducing noise to f , we created a new (noisy) function f ∗. We used a
random Gaussian noise where the amount of noise was bounded by
a fraction of the inter-quartile range of the function. Note that noise
was added to every spatio-temporal point of the function domain.
We then evaluated the relationship between f and f ∗. Figure 12
plots the relationship scores and strengths with increasing levels
of noise added to the taxi density function. Note that even when
the added noise was as large as 10% of the normal function range,
we were still able to obtain a strong positive relationship (which
was statistically significant) between the two functions. Further-
more, the relationship score remained 1 even when the noise level
was greater than 2%. This behavior can be attributed to the fact
that topological persistence, which is used to identify thresholds
for the salient features, is robust to noise [8]; small local maxima
and minima, which are created due to the addition of noise, do not
significantly affect the feature threshold.

6.3 Effectiveness: Interesting Relationships
We carried out a detailed study using NYC Urban to assess the ef-

fectiveness of our approach at finding interesting relationships and
pruning uninformative relationships that are not statistically signif-
icant. In our evaluation, we found Weather to be the most polyg-
amous data set, being related through different attributes with all
data sets in the collection, except Gas Prices, indicating the im-
pact it has on different aspects of a city. We discuss some of these
relationships below (additional relationships are described in Ap-
pendix E.2). Unless otherwise noted, all relationships are with re-
spect to salient features. Note that, while some of the results might
imply the presence of a causal relationship, further analysis (not in
the scope of this work) is required to ascertain causality.
Weather and Taxi. One of the relationships identified for the
Taxi and Weather data sets in the (hour, city) resolution is be-
tween the number of taxis and the average precipitation, having
score τ = −0.62 and strength ρ = 0.75. The values indicate a strong
negative relationship: the higher the precipitation, the lower the
number of taxis in the city. As discussed in Section 1, this con-
firms the difficulty in finding taxis on a rainy day. When testing
the hypothesis that this is due to taxi drivers being target earners,
we found a positive relationship between average fare and precipi-
tation (τ = 0.73,ρ = 0.7) implying increased earnings when it rains.
Note that Farber [16] refuted this hypothesis since he did not find
a correlation (using OLS regression) between the drivers’ earnings
and rainfall. This is primarily due to two reasons: (i) he did not take
into account the amount of rainfall—instead, he used a binary value
indicating whether it rained or not; and (ii) more importantly, he
considered the entire time period—periods with very sparse rain-
fall are considered equivalent to those having higher rainfall. Thus,
this case study also provides evidence for the importance of look-
ing at salient features, since they can evince relationships that are
not visible when the whole data is taken into account.

While examining relationships involving extreme features, we
found a negative relationship between the number of trips and the
average wind speed. This relationship has a high score (τ=−1) and

(a) Score (b) Strength
Figure 12: Robustness evaluation using the density of taxi trips.
a low strength (ρ = 0.13). The low strength is due to the presence
of significant drops in the number of taxi trips at other periods, for
example, during Thanksgiving, Christmas, and New Year [17] that
are unrelated to the wind speed. However, the high score indicates
that, whenever there is high wind speed, the number of taxi trips
is significantly lower than usual, which is related to the impact of
hurricanes in the city. We also found the same impact in the rela-
tionship between number of unique taxis and average precipitation
(having τ = −1.0) when considering extreme features. It is worth
noting that the number of taxi trips and wind speed are not related
through salient features alone (also observed from Figure 1). This
demonstrates the importance of computing relationships for salient
as well as extreme features.
Weather and Citi Bike. We found a positive relationship between
the average snow precipitation and the average bike trip duration in
the (hour, city) resolution, having τ = 0.61 and ρ = 0.16. This im-
plies that bike trips are longer in snowy days (or shorter when there
is no snow), which is consistent with what we would expect. For
a lower resolution—(day, city)—we found a negative relationship
between the average snow precipitation and the active Citi Bike
stations (τ = −0.88 and ρ = 0.65), i.e., fewer bike stations are used
when it snows. We believe that this is related not only to the drop in
bike usage under such weather, but also because heavier snow may
impact certain stations more than others: the city clears snow at
different frequencies depending on the location, and some stations
may get cleared faster than others. Note that the latter relationship
had a low score (τ = 0) when considered at the higher resolution
(hour, city): the impact is usually reflected only after the snow ac-
cumulates, and such accumulation is not captured when using an
hourly time step (higher resolution). This case illustrates the need
for evaluating relationships at multiple resolutions.
Vehicle Collisions and Weather. We found interesting relation-
ships between Vehicle Collisions and Weather, which correspond
to the increased danger of accidents when it rains. There was a
strong positive relationship between rainfall and number of mo-
torists killed (τ= 0.90,ρ= 0.95) as well as number of injured pedes-
trians (τ = 0.75,ρ = 0.66). However, we found no significant rela-
tionship between number of accidents and rainfall, implying that,
even though the number of accidents does not increase when there
is heavy rain, their severity does. This leads to a new hypothesis
that may explain the lack of taxis during rainfall: taxi drivers, be-
ing experienced with the possible danger during high rainfall, might
return home during these periods.
Taxi and Traffic Speed. We found a positive relationship between
the average taxi fare and the average traffic speed at the (hour,
neighborhood) resolution with τ = 0.79 and ρ = 0.44, implying
that drivers may in fact earn less in the presence of heavy traffic.
We also found strong negative relationships between the number of
taxi trips and the average traffic speed in the (hour, city) resolution
(τ = −0.90 and ρ = 0.65). This is expected, especially in a city such
as NYC, which has around 13,000 taxis: a larger number of trips
increases the traffic, thus slowing down the traffic.

Vehicle Collisions, 311, and Taxi. We identified relationships that
involve the Vehicle Collision data set at the (hour, neighborhood)
resolution: a strong positive relationship between the number of
collisions and the number of 311 complaints (τ = 0.99,ρ = 0.86),
and a strong positive relationship between the number of collisions
and number of taxi trips (τ = 0.99, ρ = 0.79). While the implication
of such relationships, especially the latter, is not clear, it provides
a starting point for experts, pointing them towards data sets and
attributes to be considered for further detailed analysis.
Effectiveness of Statistical Significance Test. Since there is no
gold data available, to test the ability of the significance tests to re-
move potentially uninformative relationships, we evaluated a ran-
domly chosen set of statistically non-significant relationships. For
instance, many relationships between the fare tax for taxi trips and
different attributes from the Weather, 311, and 911 data sets were
found not to be statistically significant. This indicates that, even
though some of these relationship have |τ| > 0.60, they are mostly
random and coincidental. In fact, the tax charged in taxi trip fares
does not have anything to do with different weather conditions, let
alone with 311 and 911 complaints. Other examples of spurious re-
lationships pruned by our framework include: mileage of taxi trips
(Taxi) and number of injured pedestrians (Vehicle Collisions), hav-
ing τ = 0.90; number of bike trips (Citi Bike) and number of tweets
(Twitter), having τ = 0.87; and number of 311 complaints and av-
erage speed (Traffic Speed), having τ = 0.76.

We also computed the statistical significance for relevant rela-
tionships using the standard Monte Carlo procedure. Many of these
relationships were found to be not significant using this test, includ-
ing the ones between the average snow precipitation and the aver-
age bike trip duration. This underscores the importance of taking
the spatial and temporal dependencies into account while assessing
statistical significance.

Note that such tests represent a best-effort approach to identify
candidate relationships, and thus, they can both return spurious re-
lationships and miss important ones. Gold data are needed to quan-
titatively study the trade-offs for the different techniques. Nonethe-
less, our initial experiments indicate that these significance tests are
useful and can help guide users in the data discovery process.

6.4 Comparison against Standard Techniques
We used the NYC Urban collection to compare our approach

against established techniques for identifying dependencies between
data: Pearson correlation coefficient (PCC) [7], mutual informa-
tion (MI) criterion [33], and dynamic time warping (DTW) rou-
tines [21, 31]. Some of these techniques are not naturally normal-
ized for inter-dataset comparisons (e.g., DTW and MI) or directly
extendable to spatio-temporal data. Thus, for this experiment, we
proposed normalizations that provide a meaningful range of rela-
tionship score (see Appendix D for details) and focused on data
represented as a time series aggregated over the city resolution.

Overall, we observed that standard approaches can identify the
basic relationships that are present across the entire data. For ex-
ample, the relationship between average snow precipitation and Citi
Bike trip duration could be detected by PCC as well as by MI. Sim-
ilarly, the relationship between number of taxi trips and average
traffic speed could be found using PCC and DTW. However, these
techniques did not find relationships that are only visible under cer-
tain conditions, such as the ones between rainfall and number of
taxis, or wind speed and number of taxi trips. Also, relationships
that take into account space, such as the ones between number of
collisions and number of taxi trips, are not identified by any of the
above techniques due to their inherent 1D nature.

7. RELATED WORK
In addition to the approaches discussed in Section 6.4, other

notions of relationship have also been explored by the data min-
ing and data integration communities. Some methods focused on
identifying relationships between data points within a single data
set. Achtert et al. [1] focused on computing correlation clusters,
which are composed of data points that present correlations be-
tween different attributes. Yang et al. [37] used subspace cluster-
ing, which finds different clusters of points for different subspaces
of attributes, to identify relationships. Other methods have been
proposed which identify different kinds of relationships. Sarma et
al. [9] focused on finding candidate tables that can be unioned and
joined, and considered such tables to be related. There has also
been work on data fusion, where relationships are sought between
data sets that overlap or complement each other to resolve conflicts
between different sources [10, 29] and to find their derivation his-
tory [2]. These relationships are orthogonal to and can be used in
conjunction with our technique to enrich the data discovery pro-
cess. To the best of our knowledge, no existing method addresses
the problem of identifying spatio-temporal relationships that take
into account salient features in the data.

Recently, there has been a renewed interest in finding explana-
tions for surprising results, or outliers, in database queries [30, 36].
Scorpion [36] focused on understanding aggregate queries over a
single data set. Roy and Suciu [30] handled more complex database
schemas and proposed techniques that can be used to explain rela-
tionships between different data sets. However, the thresholds for
outliers must be specified by the user for each query, which be-
comes impractical when handling hundreds to thousands attributes
and without proper knowledge about the data sets. Since our Data
Polygamy framework generates an overview of the relationships
among different data sets, the approach proposed by Roy and Su-
ciu [30] could be used to further explore and understand the most
eye-catching relationships. Thus, the techniques complement each
other in the data exploration process.

Methods for comparing scalar functions use topological abstrac-
tions directly for this comparison (e.g., [4, 25]), due to which two
functions are considered to be similar even if some affine transfor-
mation of the functions are similar, i.e., spatio-temporal locations
of the topological features are not considered. Unlike such meth-
ods, we are interested in comparing scalar functions based on the
spatio-temporal locations of their topological features.

8. DISCUSSION AND FUTURE WORK
Scalar Functions. In this work, we mainly considered data whose
spatial domain has dimension up to two. However, our framework
is general and can handle higher dimensions as well. For instance,
data corresponding to noise in buildings can be obtained in 3D,
where in addition to geo-location, the noise level varies with height.
By constructing an appropriate graph to represent this spatial do-
main, the framework can be used as is.

While we have focused on numerical attributes, non-numerical
attributes can be taken into account if they are mapped into numer-
ical values (e.g., categorical values can be mapped to unique num-
bers). In addition, while we chose to use the average to represent
functions, it is straightforward to extend our framework to support
other functions such as sum, median, min, or max. Alternatively,
users can define custom functions as well.
Types of Features. Our current feature identification approach can
miss unusual patterns in the data due to its use of a single threshold.
For example, a sudden increase in taxi trips in a relatively calm
area and time will not be identified if the density of taxi trips does

not exceed the computed threshold. Instead, we could consider the
gradient of this density over space and time. High values of this
function correspond to regions that have sudden increase/decrease
of function value: the increase during a non-busy hour will show as
a high-gradient region, and can thus be identified as a feature.

In future work, we plan to do a comprehensive study of the dif-
ferent types of scalar functions that can be derived from urban data
sets, and use them to classify the types of features they identify. We
will use this classification to create a taxonomy of scalar functions
which can then be used by domain experts to appropriately choose
the types of features and relationships in which they are interested.
We will also investigate the use of a ROC curve which considers
multiple thresholds. This would help users pick the operating point
of interest depending on the desired sensitivity-specificity trade-off.
Spatio-Temporal Resolution. We currently support conversion
from one resolution to another only when they are compatible. We
plan to explore methods to support conversion between resolutions
that do not have a direct translation (e.g., neighborhood and zip
code) in order to help evaluate relationships directly at a higher
resolution rather than moving to a lower resolution (the latter may
result in loss of information).
Future Extensions. In this paper, we used salient, topological
features as the basis for identifying spatio-temporal relationships
across disparate data sets. One direction we would like to ex-
plore is the use of event detection techniques as an alternative to
the topological features. While the topology-based approach iden-
tifies local features corresponding to maxima and minima, event
detection techniques must first create a model for what constitutes
normal behavior to detect events that do not follow this behavior.
Even though this can be expensive computationally, especially for
spatio-temporal data, it would be interesting to study the perfor-
mance trade-offs of the two approaches as well as compare the
quality of the relationships they derive.

With the help of domain experts, we intend to use the available
open data to create a benchmark for evaluating existing and future
techniques. While we are able to prune a significant number of re-
lationships, a large number of them might still need to be explored.
We plan to design a visual interface to help this exploration process.
We also plan to explore techniques to identify relationships that are
causal. Finally, we intend to extend the statistical significance test
to use a 3-torus to incorporate both space and time together.

9. REFERENCES
[1] E. Achtert, C. BÅąhm, H.-P. Kriegel, P. KrÅąger, and A. Zimek.

Robust, Complete, and Efficient Correlation Clustering. In SDM,
2007.

[2] A. Alawini, D. Maier, K. Tufte, and B. Howe. Helping Scientists
Reconnect Their Datasets. In SSDBM, pages 29:1–29:12, 2014.

[3] L. Barbosa, K. Pham, C. Silva, M. Vieira, and J. Freire. Structured
Open Urban Data: Understanding the Landscape. Big Data, 2(3),
2014.

[4] U. Bauer, X. Ge, and Y. Wang. Measuring distance between reeb
graphs. In Proc. Symp. Comp. Geom., pages 464:464–464:473, 2014.

[5] J. Besag and P. Clifford. Generalized Monte Carlo Significance Tests.
Biometrika, 76(4):633–642, 1989.

[6] A. Chohlas-Wood, A. Merali, W. Reed, and T. Damoulas. Mining
911 Calls in New York City: Temporal Patterns, Detection and
Forecasting. In AAAI Workshop On AI For Cities, 2015.

[7] V. A. Clark, O. J. Dunn, and R. M. Mickey. Applied Statistics:
Analysis of Variance and Regression. John Wiley, 2004.

[8] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of
persistence diagrams. Disc. Comput. Geom., 37(1):103–120, 2007.

[9] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu, R. Xin,
and C. Yu. Finding Related Tables. In SIGMOD, pages 817–828,

2012.
[10] X. L. Dong, B. Saha, and D. Srivastava. Less is More: Selecting

Sources Wisely for Integration. PVLDB, 6(2):37–48, 2012.
[11] H. Doraiswamy, V. Natarajan, and R. S. Nanjundiah. An Exploration

Framework to Identify and Track Movement of Cloud Systems.
TVCG, 19(12):2896–2905, 2013.

[12] H. Edelsbrunner. Geometry and Topology for Mesh Generation.
Cambridge Univ. Press, England, 2001.

[13] H. Edelsbrunner and J. Harer. Computational Topology: An
Introduction. Amer. Math. Soc., 2009.

[14] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological
Persistence and Simplification. Disc. Comput. Geom.,
28(4):511–533, 2002.

[15] M. D. Ernst et al. Permutation Methods: A Basis for Exact Inference.
Statistical Science, 19(4):676–685, 2004.

[16] H. S. Farber. Why You Can' t Find a Taxi in the Rain and Other
Labor Supply Lessons from Cab Drivers. Technical Report 20604,
National Bureau of Economic Research, 2014.

[17] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual
Exploration of Big Spatio-Temporal Urban Data: A Study of New
York City Taxi Trips. TVCG, 19(12):2149–2158, 2013.

[18] M.-J. Fortin and G. M. Jacquez. Randomization Tests and Spatially
Auto-Correlated Data. Bulletin of the Ecological Society of America,
pages 201–205, 2000.

[19] B. Goldstein and L. Dyson. Beyond Transparency: Open Data and
the Future of Civic Innovation. Code for America Press, 2013.

[20] B. Katz and J. Bradley. The Metropolitan Revolution: How Cities
and Metros Are Fixing Our Broken Politics and Fragile Economy.
Brookings Focus Book. 2013.

[21] E. Keogh and A. Ratanamahatana. Everything You Know About
Dynamic Time Warping is Wrong. Workshop on Mining Temporal
and Sequential Data, 2004.

[22] H. R. Kunsch. The jackknife and the bootstrap for general stationary
observations. The Annals of Statistics, pages 1217–1241, 1989.

[23] B. F. Manly. Randomization, Bootstrap and Monte Carlo Methods in
Biology. 1996.

[24] J. Milnor. Morse Theory. Princeton Univ. Press, 1963.
[25] V. Narayanan, D. M. Thomas, and V. Natarajan. Distance between

extremum graphs. In IEEE PacificVis, pages 263–270, 2015.
[26] City of Chicago Data Portal. https://data.cityofchicago.org.
[27] NYC Open Data. https://nycopendata.socrata.com.
[28] V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, editors.

Topological Methods in Data Analysis and Visualization. Springer,
2010.

[29] R. Pochampally, A. Das Sarma, X. L. Dong, A. Meliou, and
D. Srivastava. Fusing Data with Correlations. In SIGMOD, pages
433–444, 2014.

[30] S. Roy and D. Suciu. A Formal Approach to Finding Explanations
for Database Queries. In SIGMOD, pages 1579–1590, 2014.

[31] H. Sakoe and S. Chiba. Dynamic programming algorithm
optimization for spoken word recognition. IEEE Transactions on
Acoustics, Speech and Signal Processing, 26(1):43–49, 1978.

[32] N. Shadbolt, K. O’Hara, T. Berners-Lee, N. Gibbins, H. Glaser,
H. Wendy, and M. Schraefel. Linked Open Government Data:
Lessons from Data.gov.uk. IEEE Intelligent Systems, 27(3):16–24,
2012.

[33] Y. Su, G. Agrawal, J. Woodring, A. Biswas, and H.-W. Shen.
Supporting Correlation Analysis on Scientific Datasets in Parallel
and Distributed Settings. In HPDC, pages 191–202, 2014.

[34] TLC Trip Record Data. http://www.nyc.gov/html/tlc/html/
about/trip_record_data.shtml, 2015.

[35] Weather Data. https://www.ncei.noaa.gov/, 2015.
[36] E. Wu and S. Madden. Scorpion: Explaining Away Outliers in

Aggregate Queries. PVLDB, 6(8):553–564, 2013.
[37] J. Yang, W. Wang, H. Wang, and P. S. Yu. delta-Clusters: Capturing

Subspace Correlation in a Large Data Set. In ICDE, pages 517–528,
2002.

[38] E. Zhang, K. Mischaikow, and G. Turk. Feature-based Surface
Parameterization and Texture Mapping. ACM TOG, 24(1):1–27,
2005.

APPENDIX
A. TABLE OF SYMBOLS

Symbol Description
D Data set

A, B Data set attribute
f , g Time-varying scalar function
S Spatial domain
T Temporal domain
θ Feature threshold
θ+ Threshold for positive features
θ− Threshold for negative features
Σi Set of features of a scalar function
Σ Set of feature-related points
Σ+

i Set of positive features of a scalar function
Σ−i Set of negative features of a scalar function
G Graph representing the spatio-temporal domain

of a scalar function
τ Relationship score
ρ Relationship strength

B. ADDITIONAL NOTES ON TOPOLOGY

B.1 Critical Points and Morse Functions
Given a smooth, real-valued function f : Rd → R, a critical

point cp of f is non-degenerate if the determinant of the Hessian
matrix at cp is non-singular. The function f is called a Morse func-
tion if it satisfies the following conditions [5]:

1. All critical points of f are non-degenerate.
2. All critical values are distinct i.e., f (p) , f (q) for all critical

points p , q.

An important property of Morse functions is that critical points of
such a function can be classified based on the behavior of the func-
tion within a local neighborhood [11]. In case of a PL function
defined on a graph, the local neighborhood of a vertex v is defined
using the link of that vertex.

Definition 15. The link of a vertex v is the sub-graph induced
by the vertices adjacent on v. The upper link of v is the sub-graph
induced by adjacent vertices having function value greater than v,
while the lower link of v is the sub-graph induced by adjacent ver-
tices having function value lower than v.

Banchoff [1] and Edelsbrunner et al. [9] describe a combinato-
rial characterization for critical points of a PL function, which are
always located at vertices of the graph. Critical points are charac-
terized by the number of connected components of the lower and
upper links. The vertex is regular if it has exactly one lower link
component and one upper link component. All other vertices are
critical. A critical point is a maximum if the upper link is empty
and a minimum if the lower link is empty. It is a simple saddle if
it has one upper link and two lower link components, or two upper
link and one lower link components. All other critical points are
degenerate.

Both the conditions for a Morse function typically do not hold
in practice for PL functions. In case of a degenerate critical point,
it can be split into multiple simple saddles as shown by Edelsbrun-
ner et al. [9] and Carr et al. [2]. A simulated perturbation of the
function [8] ensures that no two critical values are equal. This per-
turbation is accomplished by adding an infinitesimally small value

to the vertices such that it imposes a total order on the vertices of
the graph domain. This helps in consistently identifying the ver-
tex with the higher function value between a pair of vertices, thus
ensuring that Condition 2 holds. Note that in the latter case, when
considering a flat local minimum (or maximum), one point in that
region is identified as critical. This does not affect the identified
features, since the thresholds are computed based on the persis-
tence of the critical points, which does not change because of the
location [4].

B.2 Merge Tree Computation
For completeness, we now briefly describe the algorithm to com-

pute merge trees of a PL function. For a more detailed description,
we refer the reader to the work by Carr et al. [2]. The algorithm
uses the local neighborhood of a vertex in G to classify whether the
vertex is a critical point or not. The merge tree is built based on this
classification.

The join tree is computed by first sorting the vertices of G in
decreasing order of function value. Next, for each vertex v in this
sorted list, the algorithm performs the following operations:

• If v is a maximum, create a new component containing v and set v
as its head. A vertex is a maximum if its upper link is empty [1].
This is a direct extension of Definition 4 to PL functions.

• if the vertices in the upper link belong to one component, then
the vertex is not critical. Add v to this component.

• v is a critical point and not a maximum. Given a Morse func-
tion, the upper link in this case consists of 2 components [9, 2].
Add an edge between v and the head of each of the 2 compo-
nents. Next, merge these components and set v as the head of the
merged component.

Similarly, the split tree is computed by traversing the vertices of
G in increasing order of function values and looking at the lower
link of the vertices. The main operations performed in the algo-
rithm are: (i) creating components; (ii) looking up components;
and (iii) merging components. This can be efficiently accomplished
using the union-find data structure [6].
Time Complexity. Let N = |V | be the number of vertices in G.
When computing the join / split trees, the vertices are first sorted,
which takes O(N log N) time. Then, for each vertex v, a create
component or merge component operation is called once, resulting
in a total of N such operations. A component look up of a ver-
tex v is executed whenever a vertex in its upper link is processed.
So, the total number of look up operations is equal to |E|/2 (to-
tal degree over all vertices). The spatial domains considered in
this work correspond to cities, which are planar. Thus, |E| = O(N).
Therefore, there is a total of O(N) union-find operations requir-
ing O(Nα(N)) time, where α() is the inverse Ackermann function.
Combining all these steps, the join and split trees can be computed
in O(N log N + Nα(N)) time.

C. IMPLEMENTATION
The number of scalar functions to be computed is proportional

to the product of the total number of attributes in the data collection
and the different resolutions. For the urban data sets we assessed
(Section 6), thousands of scalar functions were computed, and the
number of relationships evaluated during querying was in the order
of millions. However, both the indexing and querying operations
can be run independently for each scalar function and scalar func-
tion pair, respectively. To leverage the embarrassingly parallel na-
ture of these computations, we implemented the framework using
map-reduce. We use three map-reduce jobs:

• Scalar Function Computation Job. The map phase of the scalar
function computation job maps each data point (or tuple) into the
appropriate spatio-temporal points based on the resolution. The
reduce phase aggregates data from each spatio-temporal point
and generates all the scalar function values for that point.

• Feature Identification Job. The map phase splits the different
scalar functions based on the spatio-temporal resolution, while
the reduce phase creates the merge tree index and identifies the
features for a single function. Recall that each spatio-temporal
resolution of a (data set, attribute) pair is represented by one
function.

• Relationship Computation Job. The map phase generates the dif-
ferent possible combinations between data sets based on the in-
put query (including different resolutions and feature types). The
reduce phase then evaluates each pair of functions based on the
pre-computed set of features. To evaluate a relationship, we need
to compute the intersection of feature sets. This is accomplished
by representing each set of features as a bit vector, which not
only reduces the memory size, but also allows us to use efficient
bit operations to compute this intersection.

We use Hadoop for the map-reduce implementation and HDFS
as the distributed file system, where the input data sets, interme-
diate data, and output are stored. We use compression (BZip2 or
Snappy codecs) for both map and reduce outputs, and this led to
significant speed ups, in particular for large data sets, as fewer bytes
need to be read and written. We also use caching to speed-up future
queries: when a query is issued, the framework first checks if it can
be answered using the cache before invoking the map-reduce job.
In case clause provides a threshold with respect to a data set, then
features are first identified before evaluating the relationship.

D. STANDARD APPROACHES
In Section 6.4, we compared our approach against three well-

known techniques for identifying correlations: Pearson correlation
coefficient (PCC) [3], mutual information (MI) [14], and dynamic
time warping (DTW) [10, 12]. In what follows, we describe these
approaches in detail.
Pearson’s Correlation Coefficient (PCC). The Pearson’s Correla-
tion Coefficient measures the linear correlation between two vari-
ables [3]. Let X and Y be discrete random variables. The PCC score
βPCC can be computed as:

βPCC(X,Y) = ρX,Y =
cov(X,Y)
σXσY

where cov is the covariance and σ is the standard deviation. The
PCC score is a value between -1 and +1, where -1 indicates total
negative correlation, +1 indicates total positive correlation, and 0
indicates no linear correlation.
Mutual Information (MI). In information theory, mutual informa-
tion quantifies the amount of information obtained about one ran-
dom variable through another random variable. Formally, the MI
between two discrete random variables X and Y is given as:

I(X,Y) =
∑
i∈X

∑
j∈Y

P(i, j)log
P(i, j)

P(i)P(y)

where P(i, j) is the joint probability distribution function of X and
Y , and P(i) and P(j) are marginal distribution functions of X and
Y , respectively. Since we wanted to compare different pairs of vari-
ables, we use a normalized variant of MI (βMI):

βMI(X,Y) =
I(X,Y)

√
H(X)H(Y)

where H(X) and H(Y) are the Shannon entropies of X and Y , re-
spectively. The MI score ranges from 0 to 1: while 0 indicates that
the variables are independent, 1 specifies that variables are com-
pletely dependent.
Dynamic Time Warping (DTW). Dynamic Time Warping is a dy-
namic programming approach [12, 13] that is used to construct a
minimum edit-distance between two temporal sequences. Tradi-
tionally, DTW has been used to compare different pairs of time
series and perform clustering. However, since DTW distances are
not naturally normalized, they cannot be directly compared across
multiple time series. Therefore, we propose and employ the fol-
lowing normalized DTW score βDTW :

βDTW (X,Y) = 1−
DTW(X,Y)

DTW(X,0) + DTW(0,Y)

where 0 represents a constant line at y = 0, and variables X and Y are
Z-normalized. This score ranges from 0 (dissimilar/uncorrelated)
to 1 (identical/correlated) and allows us to compare across DTW
scores and time series distances.

E. ADDITIONAL EXPERIMENTS

E.1 Robustness Evaluation
In addition to the taxi density function, we also tested the robust-

ness of our technique for other scalar functions of the Taxi data set,
including the unique function (Figure I), the average miles function
(Figure II), and the average fare function (Figure III). Similar to the
result reported in Section 6.2 for the density function, we find that
our technique is robust with other functions as well.

E.2 Interesting Relationships
In this section, we discuss some additional interesting and po-

tentially informative relationships that were identified for the NYC
Urban collection.
Weather and Taxi. A relationship between the unique number of
taxi medallions and the average precipitation could also be iden-
tified in the (day, city) resolution with a higher score than in the
(hour, city) resolution: τ = −0.81. We also found out that the
unique number of taxi medallions is positively related to the av-
erage visibility in the (day, city) resolution (τ = 0.7,ρ = 0.45), and
negatively related to the average snow depth in the (week, city)
resolution (τ = −0.95,ρ = 0.95): this might indicate that some taxi
drivers avoid working when the weather conditions are not appro-
priate (e.g., low visibility or high snow accumulation in streets).
There was also a negative relationship between the number of taxi
trips and the average snow precipitation in the (week, city) res-
olution (τ = −0.87,ρ = 0.82) and in the (month, city) resolution
(τ = −1.0,ρ = 0.07).
Weather and Citi Bike. We identified negative relationships that
involve the unique number of Citi Bikes with the average snow pre-
cipitation (τ=−1.0,ρ= 0.19), the average snow depth (τ=−0.62,ρ=

0.45), and rainfall (τ = −0.62,ρ = 0.44), all in the (day, city) reso-
lution. This indicates that less Citi Bikes are used when weather
conditions are unpleasant.
Weather and Traffic Speed. For the Weather and Traffic Speed
data sets, we found a positive relationship between the average
visibility and the average traffic speed in the (week, city) resolu-
tion (τ = 0.75,ρ = 0.24) and in the (month, city) resolution (τ =

1.0,ρ = 0.14). Such relationships are expected: when the visibility
in the streets is low (e.g., due to a foggy weather), cars tend to drive
slower to avoid accidents.

(a) Score (b) Strength
Figure I: Robustness evaluation (unique number of taxis).

(a) Score (b) Strength
Figure II: Robustness evaluation (average of traveled miles).

(a) Score (b) Strength
Figure III: Robustness evaluation (average of total taxi fare).

Taxi and Traffic Speed. Recall that we discovered a negative re-
lationship between the number of taxi trips and the average traf-
fic speed in the (hour, city) resolution. This relationship was also
identified in other resolutions, including (day, neighborhood) (τ =

−0.99,ρ = 0.08); (day, city) (τ = −0.84,ρ = 0.4); and (week, city)
(τ = −1.0,ρ = 0.16). Additionally, there was also a negative re-
lationship between the average taxi trip duration and the average
traffic speed in the (day, city) resolution, having τ = −0.93 and
ρ = 0.51.
Taxi and Gas Prices. We found a positive relationship between
the average fare and the average gas price in the (month, city) res-
olution, with τ = 1.0 and ρ = 0.5: in fact, the per-mile metered taxi
rate may increase when gas prices also increase [7]. We find this
at a monthly resolution because it is difficult to detect the affect of
gas prices at a lower resolution. Note that the Gas Prices data is
available at a weekly resolution. We also found a negative rela-
tionship between the unique number of taxis and the average gas
price in (week, city) resolution (τ = −1.0,ρ = 0.008) and (month,
city) resolution (τ = −1.0,ρ = 0.5). However, the implication of
this relationship is not clear.

311 and 911. There were some curious relationships between the
number of 311 complaints and the number of 911 calls, in both
(day, neighborhood) resolution (τ= 0.92,ρ= 0.27) and (week, neigh-
borhood) resolution (τ = 1.0,ρ = 0.65). Experts can perform fur-
ther analysis to better understand these relationships and find out if
emergency and non-emergency calls are indeed related.
Vehicle Collisions. We identified some interesting relationships
between Vehicle Collisions and other data sets. In the (day, city)
resolution, there was a positive relationship between the average
number of motorists injured in a vehicle crash and the average
traffic speed (τ = 0.64,ρ = 0.46), which might indicate that high
speeds influence the occurrence of collisions that are dangerous
for drivers. In the (day, neighborhood) resolution, there were rela-
tionships between the number of collisions and the number of 311
complaints (τ = 0.84,ρ = 0.41), and also with the number of 911
calls (τ = 0.94,ρ = 0.18). The former also showed up in the (week,
neighborhood) resolution, with τ = 0.72 and ρ = 0.22. In this reso-
lution, there was also a positive relationship between the number of
collisions and the number of taxi trips (τ = 0.99,ρ = 0.25). Again,
although these relationships may not have apparent implications,
experts can use this information to perform further analysis and
identify the reason behind them.

F. REFERENCES
[1] T. F. Banchoff. Critical Points and Curvature for Embedded

Polyhedral Surfaces. Am. Math. Monthly, 77:475–485, 1970.
[2] H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in All

Dimensions. Comput. Geom. Theory Appl., 24(2):75–94, 2003.
[3] V. A. Clark, O. J. Dunn, and R. M. Mickey. Applied Statistics:

Analysis of Variance and Regression. John Wiley, 2004.
[4] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of

persistence diagrams. Disc. Comput. Geom., 37(1):103–120, 2007.
[5] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and

V. Pascucci. Loops in Reeb graphs of 2-manifolds. Disc. Comput.
Geom., 32(2):231–244, 2004.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, 2001.

[7] P. Donohue. Taxi Drivers Petition NYC for Fare Hike over Soaring
Gas Prices. NY Daily News, April 2011.

[8] H. Edelsbrunner. Geometry and Topology for Mesh Generation.
Cambridge Univ. Press, England, 2001.

[9] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci.
Morse-Smale Complexes for Piecewise Linear 3-Manifolds. In Symp.
Comput. Geom., pages 361–370, 2003.

[10] E. Keogh and A. Ratanamahatana. Everything You Know About
Dynamic Time Warping is Wrong. Workshop on Mining Temporal
and Sequential Data, 2004.

[11] J. Milnor. Morse Theory. Princeton Univ. Press, 1963.
[12] H. Sakoe and S. Chiba. Dynamic programming algorithm

optimization for spoken word recognition. IEEE Transactions on
Acoustics, Speech and Signal Processing, 26(1):43–49, 1978.

[13] S. Salvador and P. Chan. Toward Accurate Dynamic Time Warping
in Linear Time and Space. Intell. Data Anal., 11(5):561–580, 2007.

[14] Y. Su, G. Agrawal, J. Woodring, A. Biswas, and H.-W. Shen.
Supporting Correlation Analysis on Scientific Datasets in Parallel
and Distributed Settings. In HPDC, pages 191–202, 2014.

