Packing Experiments for Sharing and Publication

Fernando Chirigati
Polytechnic Institute of NYU

fchirigati@nyu.edu

ABSTRACT

Reproducibility is a core component of the scientific pro-
cess. Revisiting and reusing past results allow science to
move forward — “standing on the shoulders of giants”, as
Newton once said. An impediment to the adoption of com-
putational reproducibility is that authors find it difficult to
generate a compendium that encompasses all the required
components to correctly reproduce their experiments. Even
when a compendium is available, reviewers and readers may
have difficulties in verifying the results on platforms differ-
ent from the ones where the experiments were originally run.
As a step towards simplifying the process of creating repro-
ducible experiments, we have developed ReproZip, a tool
that automatically captures the provenance of experiments
and packs all the necessary files, library dependencies and
variables to reproduce the results. Reviewers can then un-
pack and run the experiments without having to install any
additional software. We will demonstrate real use cases for
ReproZip, how packages are created, and how reviewers can
validate and explore experiments.

Categories and Subject Descriptors

H.2 [Database Management|: Database Applications; H.4
[Information Systems Applications|: Miscellaneous

General Terms

Documentation, Experimentation

Keywords

Computational Reproducibility, Provenance, ReproZip

1. INTRODUCTION

The ability to reproduce and test experiments is critical
in the scientific method [2, 5], both to verify results and to
build on them. In natural science, long tradition requires
experiments to be described in enough detail so that they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’13, June 22-27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

Dennis Shasha
New York University

shasha@cs.nyu.edu

Juliana Freire
Polytechnic Institute of NYU

juliana.freire@nyu.edu

can be reproduced by researchers around the world. This
standard, however, has not been applied to computational
experiments. Researchers often have to rely on tables, plots
and figure captions included in these papers, which loosely
describe the obtained results. Since details of the compu-
tational steps are often omitted, it is difficult to verify and
reproduce many of the published results [9]. This has led to
a credibility crisis in computational science [3].

To make a computational experiment reproducible, au-
thors need to encapsulate all the necessary components so
that results presented in papers can be verified. A compu-
tational experiment, that has been developed at time ¢ on
hardware/operating system s and data d, is reproducible if
it can be executed at time ¢’ on system s’ and data d’ that is
similar to (or potentially the same as) d. Such experiments
are the basic building block for reproducible research papers,
which, in addition to text, include data, specification of com-
putational processes, software/code, as well as information
about the environment used to derive the results.

In the scientific community, a number of tools have been
proposed to support the creation of reproducible experi-
ments. Some of these solutions are domain-specific. For
example, GenePattern [6] is a genomic analysis platform,
while Madagascar [10] supports multidimensional data anal-
ysis and is used to analyze seismic data. Scientific workflow
systems, on the other hand, are general and support the
specification of arbitrary computational experiments that
weave together multiple functions and libraries. While these
systems maintain provenance information for workflow ex-
ecutions and data products derived by workflows [1], they
fail to capture information about the environment, includ-
ing software and data dependencies. Thus, even though they
support reproducibility, they do not support portability: a
given workflow may not run in an environment different from
the one in which it was originally created.

Another class of tools focuses on capturing information
about the computational environment. Examples include
virtual machines and CDE [7]. By creating virtual machine
snapshots, authors can encapsulate all the components of
an experiment. However, such snapshots are often large and
encompass not only the components required to reproduce
the results, but also a plethora of files that are not related to
the experiment. In addition, if authors do not use a virtual
machine from the beginning of a project, they will need to
create a virtual machine and install the experiment and all
dependencies, which can be time consuming. CDE offers a
lighter-weight alternative to virtual machines. It relies on
the ptrace call on Linux to identify only the files required

Packing Step Unpacking Step

r— """ "=-"-"-"—"=--"-"-"—-—"'—-"—=-"—--—-"—"—— —"7r°» - - = = = — — A
Provenance Provenance Package Package
Capture Analysis Generation Extraction

I [I
I 1 |
I 1 |
| Resource and % Reproducible | | File Workflow |
System Call N P ' === | Dependency —_— Package . — v
| Tracing é‘;ﬁi:ﬁg? Provenance Tree Identification Workflow Specification | | Extraction Configuration |
Builder Specification
VA N .
| = “Q . "\ . Il E !
| .
v 3 AN v
l SySTEMTAP I B I
Storage
l Configuration 1 - l
L — — _— _ _ MowoDB _ _ _ _ _ _ R _ _ _ _ _ _ _ a eerment a

Figure 1: Architecture of ReproZip.

for running a particular command, and creates a package
containing these files [7]. This package can then be copied to
different Linux installations where it can be run within the
CDE environment: CDE dynamically changes the system
calls to point to the correct files included in the package.

This demo presents ReproZip, a general tool that simpli-
fies the process of creating reproducible experiments from
command-line executions, a frequently-used common denom-
inator in computational science. Similar to CDE, ReproZip
tracks operating system calls and creates a package that con-
tains all the binaries, files and dependencies required to run
a given command on the author’s computational environ-
ment E. Unlike CDE, ReproZip also generates a workflow
specification for the experiment, which can be used to help
reviewers to explore and verify the experiment. A reviewer
can extract the files and workflow on another environment
E' (e.g., the reviewer’s desktop), without interfering with
any program or dependency already installed on E’. The
experiments can then be correctly reproduced and even var-
ied on E’. By using the derived workflow to perform this
exploration, provenance of the review process is automat-
ically captured, and can serve not only to document the
process but also as a means to support communication be-
tween authors and reviewers. Furthermore, users are able to
customize the reproducible package and tune is size by inter-
actively inspecting the experiment trace. Last, but not least,
ReproZip does not add any run-time overhead to executing
a packaged experiment. ReproZip has been developed to
work on Linux distributions, and it has been successfully
tested on Ubuntu and Fedora.

2. REPROZIP IN ACTION

ReproZip works in two stages: packing and unpacking.
Authors use the system to identify the necessary dependen-
cies and to create the reproducible package. The experiment
can then be unpacked in the reviewer’s environment, where
the results are validated and explored.

2.1 Packing Step

The first phase in producing a reproducible experiment
on environment F is to pack it, which is accomplished by
three modules (shown in Figure 1): Provenance Capture,
Provenance Analysis, and Package Generation.

Provenance Capture. To create a reproducible experi-
ment, an author invokes his experiment through
ReproZip. The system uses SystemTap [12] to transpar-
ently capture the provenance of the experiment—it dynami-

cally instruments and traces system calls (ezecve, open, read,
write, close and pipe, to name a few). Through these sys-
tem calls, it is possible to gather information for each com-
putational process involved in the execution of the experi-
ment, such as command-line arguments, environment vari-
ables, working directory, files read and files written. This
information is then collected and stored in MongoDB [11],
a NoSQL database, where it can be easily accessed and
queried. Our choice of SystemTap and MongoDB was in-
spired by the Burrito System [8], which successfully uses
these tools to capture and store provenance for programs
run on Linux.

Provenance Analysis. ReproZip uses the collected trace
data to identify the components of the experiment. The
Provenance Analysis module accesses the provenance stor-
age and creates a provenance tree of the experiment. Each
node in the tree corresponds to an OS process, and an edge
between a parent and a child node indicates that the parent
process invoked (or spawned) the child process. The root of
the tree represents the main process of the experiment which
is specified by the user when ReproZip is invoked. The tree
is built incrementally: when a process corresponding to a
node n spawns a process n’, a new node is created for n’
and an edge is inserted between n and n’. Each node in the
tree stores provenance data — obtained by the Provenance
Capture module — for the corresponding process.

Once the provenance tree is built, the Resource and De-
pendency Identification sub-module traverses the tree to iden
tify executable programs, input files, output files and depen-
dencies that should be included in the reproducible package.
We should note that SystemTap captures all dependencies,
some of which may not be necessary. ReproZip outputs a
configuration file that lists all the identified programs, input
files and dependencies, and allows authors to customize the
configuration to exclude a specific file or set of files (e.g.,
using Unix-shell style wildcards). This customization step
is particularly useful to control the size of the package, for
example, by discarding temporary files and omitting large
files that can be obtained elsewhere.

Package Generation. The identified input and output
files are used to derive a specification of the experiment
workflow. The main program of the experiment is wrapped
in a workflow module that automatically takes the command-
line arguments as inputs. By making these arguments ex-
plicit in the workflow specification, reviewers can immedi-
ately see which parameters can be changed. The current
implementation of ReproZip derives workflows that can be

[./mc33verification input/3741-scalar_field.iso output/output.txt}

Provenance Tree

‘-~)./mc33veriﬁcaﬁon

/programs/analyzeGrid ./programs/modifiedMC33

\y ./programs/subdivideGrid
[
[Identification of input files, output files, dependencies, ... }
I

ﬂisTrails Workflow V \

input/3741-scalar_field.iso &7

EE] ¥

input1
(PersistentinputFie)
g

./mc33verification

"~

»]
stderr

& QN ELE ¥
stdout output!
K)
T

output/output.txt v.} /

Reproducible Package

Figure 2: Packing step of an experiment on topo-
logical correctness of marching cubes.

run on the VisTrails system (www.vistrails.org) [4]. Vis-
Trails supports data exploration and the ability to capture
detailed provenance of the review process.

A package is then created that contains the experiment
workflow as well as all the required files from the author’s en-
vironment F, using the same directory structure. Note that
the command-line arguments and the environment variables
in the workflow are configured to reference the files that are
inside the reproducible package. A mapping between sym-
bolic links and target files is also added to the package, so
that these links can be correctly created in the unpacking
step.

Figure 2 shows a real example where a reproducible pack-
age is created for an experiment that verifies the topological
correctness of marching cubes algorithms. As shown in the
tree, the main program, mc33verification, calls three pro-
grams: analyzeGrid, subdivideGrid and modifiedMC33. The
provenance information captured for each node is also used
to derive the workflow, in particular the input and output
files that connects the different programs.

2.2 Unpacking Step

Given an experiment created in environment F, a reviewer
needs to unpack and run it in a new environment E’, sim-
ilar to E.! The module Package Extraction (see Figure 1)
is responsible for extracting the files and placing them in a
single directory in E’, i.e., no changes are made to other di-
rectories. The workflow is also automatically configured so
that paths to programs and input files, and paths defined in
environment variables, are adjusted to use the experiment
directory in E’. Note that environment variables are config-
ured only for the workflow execution — the original variables

!Executables of the experiment will fail in E’ if they are in-
compatible with the Linux kernel or hardware architecture.

remain unchanged to avoid interfering with the normal op-
erating environment of E’.

2.3 Verification and Exploration

Users may run the experiment from the command line and
examine the results. They can also run the workflow using
VisTrails, and by doing so, they can leverage the mechanisms
VisTrails provide to aid users in exploratory tasks, including
the ability to perform parameter sweeps, to compare multi-
ple results side by side, and to extend the original workflow.
In addition, because VisTrails keeps detailed provenance of
exploratory tasks, this provenance can serve as a means of
communication between the reviewer and the authors.

Using ReproZip, (i) experiment execution is straightfor-
ward — reviewers need only load and “play” the workflow;
(ii) there is a visual representation of the experiment, where
main input and output files are explicitly described, which
can help the reviewer better understand the structure of the
experiment; (iii) reviewers can easily explore the experiment
and try different parameters and input files; (iv) reviewers
can also extend the original workflow to explore different
techniques or perform analyses (e.g., generate plots) differ-
ent from the ones produced by the authors; and (v) the
provenance of the verification process is automatically cap-
tured by VisTrails — if the reviewer finds an issue with a
given configuration, she can send the exact configuration
back to the authors.

Figure 3 illustrates the verification and exploration pro-
cess performed in marching cubes experiment. The original
workflow is shown on the top left. The reviewer extended the
workflow to derive a visualization, and after verifying the re-
sults, he also used the parameter sweep feature of VisTrails
to compare results for multiple values for the isosurface. Ex-
amining the different isosurfaces enables the reviewer to ver-
ify the robustness of the marching cubes algorithm being
evaluated.

3. DEMONSTRATION

In our demonstration, we will encourage demo visitors to
use the tool themselves. We have used ReproZip to create
reproducible packages for a number of (real) experiments
in different domains, including molecular biology, visualiza-
tion and database research. Visitors will choose one of the
use cases we will provide and try all three parts of the re-
producibility process: (i) experiment creation, (ii) packing
on a source environment F, and (iii) unpacking and repro-
ducing (with variations) on a target environment E’. For
example, for the molecular biology use case, to create an
experiment, visitors will generate random data characteris-
tic of molecular biology experiments, decide among a set of
network inference tools, decide how to put them together
and generate a result. After running this experiment, they
will be able to view the dependencies that have been cre-
ated, both direct and transitive, and pack the experiment.
Similarly, for the visualization experiment (topological cor-
rectness of marching cubes), visitors will be able to explore
the marching cube algorithm and test its robustness by try-
ing different values for the isosurface. In the third part of the
reproducibility process, they will transfer the experiment to
a different environment and run it. They will be able to vary
some parameters for some of the tools to see how the results
change.

EE] ¥ EE]

inputt
(PersistentinputFie)
3

input1
(PersistontinputFie)
)

Workflow
m Extension

S
[DO0D00®000®0 b
vikRonderor |

Visualization

e

Parameter
Exploration

_—

Figure 3: Verifying the topological correctness of a marching cubes algorithm. By using the workflow derived
by ReproZip, the reviewer can extend it to visualize the results derived by the author. The reviewer can also
verify the robustness of the algorithm by exploring different isosurfaces using the parameter sweep feature

of VisTrails.
4. CONCLUSIONS

The perceived difficulty of packing experiments has dis-
couraged authors from publishing reproducible results. Our
system ReproZip simplifies this task. By combining fea-
tures of scientific workflows and tools that transparently
capture information about software and data dependencies,
ReproZip not only simplifies the process required to create
reproducible experiments, but it also helps reviewers to val-
idate the results and communicate their findings to the au-
thors. While our initial evaluation has shown that ReproZip
is effective for a wide range of experiments in different do-
mains, there are situations where the tool fails, e.g., when a
given executable uses a hard-coded absolute path, or when
the reviewer does not have an environment that is compat-
ible with that of the author. For these cases, our current
approach is to use ReproZip together with a virtual ma-
chine. We hope that as more authors adopt the practice of
publishing reproducible results, they (as well as tool devel-
opers) will also adopt best practices that are conducive to
reproducibility.

5. ACKNOWLEDGMENTS

We thank Jesse Lingeman for feedback on our initial ideas
and for providing the molecular biology experiment we will
use in our demonstration. We also thank Lis Custédio and
Tiago Etiene for providing their marching cubes experiment
that we have used to test ReproZip and will also offer to our
demo visitors as a use case. This work was supported in part
by the National Science Foundation (grants CNS-1229185,
CNS-1153503, 11S-1139832, 11S-0905385, 11S-1142013, I0S-
0922738, MCB-0929338 and MCB-1158273) and the Na-
tional Institutes of Health (grants GM 32877-21/22 and
2R01GM032877-25A1).

6. REFERENCES

[1] S. B. Davidson and J. Freire. Provenance and
scientific workflows: challenges and opportunities. In
SIGMOD, pages 1345-1350, 2008.

[2] A. Davison. Automated capture of experiment context
for easier reproducibility in computational research.
Computing in Science Engineering, 14(4):48 —56,
july-aug. 2012.

[3] D. Donoho, A. Maleki, I. Rahman, M. Shahram, and

V. Stodden. Reproducible research in computational

harmonic analysis. Computing in Science &

Engineering, 11(1):8-18, Jan.-Feb. 2009.

J. Freire, D. Koop, E. Santos, C. Scheidegger, C. Silva,

and H. T. Vo. The Architecture of Open Source

Applications, chapter VisTrails. Lulu.com, 2011.

[5] J. Freire and C. T. Silva. Making Computations and
Publications Reproducible with VisTrails. Computing
in Science and Engineering, 14(4):18-25, 2012.

[6] GenePattern. http://www.broadinstitute.org/

cancer/software/genepattern/.

P. Guo. CDE: A Tool for Creating Portable

Experimental Software Packages. Computing in

Science and Engineering, 14(4):32-35, 2012.

[8] P. J. Guo and M. Seltzer. Burrito: wrapping your lab
notebook in computational infrastructure. In
Proceedings of the 4th USENIX conference on Theory
and Practice of Provenance, TaPP’12, pages 7-7,
Berkeley, CA, USA, 2012. USENIX Association.

[9] R. LeVeque. Python tools for reproducible research on
hyperbolic problems. Computing in Science €
Engineering, 11(1):19-27, Jan.-Feb. 2009.

[10] Madagascar. http://www.ahay.org/wiki/Main_Page.

[11] MongoDB. http://www.mongodb.org/.

[12] SystemTap. http://sourceware.org/systemtap/.

[4

7

