
Towards Integrating Workflow and Database
Provenance?

Fernando Chirigati and Juliana Freire

Polytechnic Institute of NYU
Computer Science and Engineering Department

fernando.chirigati@gmail.com,juliana.freire@nyu.edu

Abstract. While there has been substantial work on both database and
workflow provenance, the two problems have only been examined in iso-
lation. It is widely accepted that the existing models are incompatible.
Database provenance is fine-grained and captures changes to tuples in
a database. In contrast, workflow provenance is represented at a coarser
level and reflects the functional model of workflow systems, which is
stateless—each computational step derives a new artifact. In this paper,
we propose a new approach to combine database and workflow prove-
nance. We address the mismatch between the different kinds of prove-
nance by using a temporal model which explicitly represents the database
states as updates are applied. We discuss how, under this model, repro-
ducibility is obtained for workflows that manipulate databases, and how
different queries that straddle the two provenance traces can be evalu-
ated. We also describe a proof-of-concept implementation that integrates
a workflow system and a commercial relational database.

Keywords: Workflow Provenance, Database Provenance, Reproducibil-
ity

1 Introduction

Provenance for digital objects is becoming increasingly important both in in-
dustry and science, not only due to regulations such as HIPAA and Sarbanes
Oxley, but also due the fact that computational scientific results must be repro-
ducible [6]. The area of provenance management has been very active and there
is a rich body of work on different aspects of provenance. Work on database
provenance has focused on techniques to represent provenance for tuples in a
relational database and to propagate provenance through queries [3]. For scien-
tific workflows, there have been proposals that address issues such as capture,
modeling, storage, and querying for provenance information [4, 8].

However, an important problem has received much less attention: how to
combine database and workflow provenance. For scientific workflows that interact
with data stored in databases, unless there is a model that combines the different

? The original publication is available at http://www.springerlink.com/.



2 F. Chirigati and J. Freire

(a) (b)

Fig. 1: This figure illustrates challenges in reproducing a workflow run when
database access is involved. (a) shows two runs of the same workflow which
accesses a database; because the database has changed in between the two runs,
even though the workflows have the same structure and input data (i.e., input),
their results differ—one derives output and the other derives output’. (b) shows
a workflow that, due to its DAG structure, can have two different execution
orderings, and depending on the ordering, the outputs may also be different.

kinds of provenance, it is not possible to maintain accurate provenance of the
complete process, and consequently, results cannot be reproduced. Consider the
example shown in Fig. 1a. The workflow on the left receives as input input and
outputs output. One of its modules, ReadDB, consumes data from a database. If
this workflow is executed at a later time, even if it uses the same input, there is
no guarantee that it will produce the same result. In particular, agents that are
external to and not observable by the workflow system may modify the database
in between the executions. This happens even in scenarios where database access
is always observable by the workflow system. For example, Fig. 1b shows a
workflow that both reads from and writes to a database. Note that either ReadDB
or UpdateDB modules can be executed after GetInfo. The workflow has two
possible execution orderings: if ReadDB is executed first (Run 1 ), it will read the
initial state s1 of the database; otherwise, it will read the state that results from
the changes applied by UpdateDB (Run 2 ). Depending on the execution order,
the result produced by the workflow might be different, and without information
about how the database changed, the workflow run might not be reproducible.

Combining database and workflow provenance is challenging because of an in-
herent mismatch in the models used to represent them. Workflows adopt a func-
tional, stateless model where each module is a function that receives some input
data and generates a new output: the workflow structure and inputs uniquely
identify the outputs [12]. Databases, in contrast, adopt a stateful model: every
time a transaction commits, there is a new state that reflects the changes ap-



Towards Integrating Workflow and Database Provenance 3

plied in the transaction. Thus, accesses to databases break the stateless (and
deterministic) scientific workflow model.

In this paper, we propose a new model to integrate database and workflow
provenance. To the best of our knowledge, this is the first approach that supports
reproducibility of workflows in the presence of database accesses. This model
was inspired by the observation that transaction temporal databases provide
a suitable abstraction to represent database changes that is compatible to the
execution model of scientific workflows. The key intuition here is that, because
transaction temporal databases keep track of each state of the database by its
transaction time, it is possible to uniquely identify and retrieve each state [9].
Consequently, by recording information about the database states it observes or
generates, a workflow system is able to faithfully reproduce workflow executions
that involve database access. Because our model relies on a temporal model
that is currently supported by commercial relational databases such as Oracle
RDBMS [14] and DB2 [5], it is practical and amenable to implementation. In
fact, we describe how we have implemented this model in the VisTrails system [7]
using the Oracle Total Recall functionality [15].

Besides the ability to accurately reproduce a workflow run, our approach
also supports queries that straddle database and workflow provenance. Because
the provenance information from the different systems is connected, we have a
graph that allows the complete lineage of data artifacts to be computed, e.g.,
the workflow modules that affected a given database relation, or the relation
states that contributed to the derivation of a data product by a workflow. As we
discuss in Section 2, it is also possible to obtain the provenance for individual
tuples and to answer how provenance queries [3].

Related Work. Also with the goal of integrating database and workflow prove-
nance, Acar et al. [1] proposed the use of a common provenance model. Their pro-
posal was motivated by the fact that workflow specifications, unlike databases,
are seldom accompanied by a formal specification, and this, they argue, makes it
difficult to integrate database and workflow provenance. Amsterdamer et al. [2]
proposed a framework to integrate the fine-grained database-style provenace
with workflows that consist of Pig Latin [13] modules. To capture fine-grained
provenance for modules, they translate Pig Latin expressions into nested rela-
tional calculus expressions. We attack an orthogonal problem: our goal is to
connect the two different kinds of provenance so as to support reproducibility.
Our approach makes no assumption about the semantics of workflow modules,
which can be black boxes, and it also does not prescribe the use of a unified
provenance model. Nonetheless, the information captured by our model makes
it possible to answer queries that combine database and workflow provenance.

Outline. The remainder of the paper is organized as follows. We present our
model that integrates workflow and database provenance in Section 2, where
we also discuss how this model supports reproducibility as well as provenance
queries. In Section 3, we describe our prototype that combines VisTrails prove-
nance with Oracle Total Recall. We conclude in Section 4 where we outline
directions for future work.



4 F. Chirigati and J. Freire

2 A Model for Integrating Workflow and Database
Provenance

In this section, we begin by introducing some basic concepts about workflows
and databases, and then formally define our integrated provenance model.

2.1 Background

Stateless Workflows. We assume a dataflow model for workflows. A workflow
is represented as a directed acyclic graph (DAG), where vertices are modules
(functions) that perform computations, and data flows through the edges which
connect modules.

Definition 1. A workflow instance W is described by the tuple (M,C), where
M is the set of modules and C is the set of connections. Each module m ∈ M
is represented by a function fm, such that

fm : DI
m → DO

m (1)

where DI
m is the domain of input values and DO

m is the domain of output values.
Since the definition of fm is unknown, it is considered a black box1. A connection
c ∈ C that connects module m to module n is described as the tuple (m,n, d),
where d corresponds to the data product that flows from m to n and that creates
the dependency between these modules.

In the remainder of the paper, we represent a module m as fm(Im) = < Om >,
where Im represents the input set and Om is the output set of m. For instance,
the workflow presented in the left side of Fig. 1a can be described by the following
functions:

fGetInfo(input) = < output1 >, fReadDB(output1) = < output2 >,
fProcessData(output2) = < output >

Stateful Databases. Transaction temporal databases keep track of the differ-
ent states of a database as tuples are added, deleted or updated. Thus, these
databases have all the necessary elements to support fine-grained provenance [9,
10] and to achieve reproducibility of results [10].

To model transaction temporal relations, we adapt the backlog scheme pro-
posed by Jensen et al. [11]. A backlog is a relation that contains the complete
history of changes in another relation. Any tuple affected by an update is added
to the append-only backlog, and tuples in the backlog are never updated. Back-
logs thus maintain a complete record of modifications in tuples of the database.
Each tuple in the backlog can be uniquely identified by its valid and transaction

1 A module is also associated with a set of parameters whose values may also be used
by fm, and thus contribute to the output of the module. To keep the notation simple,
we do not explicitly show these parameters and their values.



Towards Integrating Workflow and Database Provenance 5

times. In our model, it is sufficient to consider only transaction time. We also
restrict the data manipulation language to the operations select, insert, update
and delete. While to simplify the presentation, we focus on single-relation queries
and transactions; as we discuss below, the model can naturally handle multiple
relations. Similarly, while we assume that separate states are maintained for each
relation, rather than for the whole database, states covering all relations can also
be supported2. This scheme is defined below.

Definition 2. Given a schema < = (K,A) from a transaction temporal relation
R, where K is the tuple identifier and A is the set of attributes for R, the schema
<B of the corresponding backlog relation RB is defined as

<B = (K, A, T, Op, U) , (2)

where T is the transaction time when the tuple was included in the backlog, Op is
the operation applied to the tuple at time T (I for insertion and D for deletion)
and U is the user who managed the operation in the tuple.

When a set of tuples is first inserted into a relation, they are also inserted into
the backlog; the transaction time T when the insertion took place is recorded for
each tuple, and Op is set to “I”. If a tuple is deleted, this tuple is inserted again
in the backlog, but with T set to the transaction time when the deletion was
performed, and Op set to “D”. An update operation is represented by a deletion
followed by an insertion, both with the same transaction time T .

The transaction time corresponds to the timestamp when the transaction was
successfully committed. Consequently, all tuples with the same transaction time
T were inserted in the backlog by the same transaction, i.e., they belong to the
same state of the relation. A state represents a snapshot of a given relation at a
certain time point. Since a new state is created for each successful transaction,
we can uniquely identify a state by the transaction time. Because backlogs are
append-only, they maintain all information needed to reconstruct each database
state, and thus, they provide complete provenance for all tuples.

Definition 3. The tuples in the backlog relation RB represent the sequence of
states S(R) for R:

S(R) = {(S1(R), T1(R)), . . . , (Sn(R), Tn(R))} , (3)

where Ti(R), for 1 ≤ i ≤ n, represent transaction times recorded in RB, and
Si(R) corresponds to the state of R at time i. A state Si(R) is defined as

Si(R) = {tj ∈ RB | time(tj) ≤ Ti(R)} , (4)

where tj is a tuple of RB and time(tj) is the transaction time recorded for tj.

2 In practice, these choices will be determined by the underlying implementation of
the temporal features in the database.



6 F. Chirigati and J. Freire

Note that the indices in the states indicate their order in time. Given the
states Si(R) and Sj(R), and i < j, then Ti(R) < Tj(R). Using this model,
besides being able to identify the states by the transaction times, it is also
possible to identify the differences between two states. Below, we use a concrete
example to illustrate this.

Definition 4. The difference (or delta) between two states Si(R) and Sj(R),
where i < j, is computed as follows:

∆j,i(R) = Sj(R)− Si(R) (5)

Example 1. Consider the following scenario. We have an empty relation Emp. A
transaction that inserts two tuples in Emp is executed and successfully commit-
ted at transaction time 10 by user fchirigati. Then, at transaction time 15, user
jfreire commits a transaction that corrects the job information about employee
Robert. Finally, at transaction time 20, a new tuple is inserted in the relation by
user fchirigati. The backlog which reflects these operations is shown below.

K Name Job T Op U

1 Robert Researcher 10 I fchirigati
2 Claire Assistant Director 10 I fchirigati
1 Robert Researcher 15 D jfreire
1 Robert Research Assistant 15 I jfreire
3 Eric Administrative Director 20 I fchirigati

The set of states S(Emp) corresponds to the different timestamps in the backlog:

S(Emp) = {(S1(Emp), 10), (S2(Emp), 15), (S3(Emp), 20)}

The delta ∆3,1(Emp) between S1(Emp) and S3(Emp) is:

1 Robert Researcher 15 D jfreire
1 Robert Research Assistant 15 I jfreire
3 Eric Administrative Director 20 I fchirigati

2.2 Integrating Workflow and Database Provenance

As discussed in Section 1, a key challenge in integrating database and work-
flow provenance to support reproducibility stems from the inherent mismatch
between the two provenance models. In what follows, we show how this problem
can be addressed for databases which adopt a temporal transaction model. In
order to connect the workflow provenance to the database provenance, we need
to capture information about the database states observed by the workflows.
Given a module m in a workflow instance W that either consumes or modifies
data in a relation R of a transaction temporal database, for each execution of



Towards Integrating Workflow and Database Provenance 7

Fig. 2: In the integrated provenance model, database states observed by the
workflow are recorded in the provenance (dashed arrows represent the database
accesses.) Together with the workflow provenance, they not only provide the
complete derivation chain for the workflow results, but also enable result repro-
ducibility.

m, we store, in the provenance, information about the states before and after
the module execution:

fm(Im, [R, Tb(R)]) = < Om, [R, Ta(R)] > (6)

where Tb(R) and Ta(R) are the transaction times of the states of relation R
before and after the module execution, respectively. Since a transaction time
uniquely determines a state, by storing this information, we can retrieve the
state.

If Ta(R) and Tb(R) are the same, it means that m did not modify R. Oth-
erwise, if the transaction times are different, a new state was created, and this
implies that data was being inserted, updated or deleted from R.

To simplify the presentation, so far we have assumed single-relation queries
and transactions. However, it is straightforward to extend the model to work
with multiple relations: transaction times must be stored for all relations used
in a query. For instance, if a module m retrieves data from relations R1 and R2,
states of both relations need to be explicit in the model:

fm(Im, [R1, Tb(R1)], [R2, Tb(R2)]) = < Om, [R1, Ta(R1)], [R2, Ta(R2)] > (7)

Fig. 2 shows an example of the information captured by our model. Both
workflows (W1 and W2) have modules that manipulate data in relation R. The
sequence of states for R, which is maintained by the database system, is also
shown in the figure. For instance, modules m12 and m13 of W1 can be represented
by functions

fm12
(I12, [R, T1(R)]) = < O12, [R, T1(R)] > (8)



8 F. Chirigati and J. Freire

fm13(I13, [R, T1(R)]) = < O13, [R, T2(R)] > (9)

respectively. Given these functions, we know that m12 only retrieves data from
relation R, since states before and after the execution are the same, and that m13

modifies relation R—a new state is created. In this case, we also know that m13

is responsible for ∆2,1, i.e., the set of changes applied to S1(R) . Note that the
integrated model also exposes parts of the database provenance that, although
not directly observed by the workflows, affect their results. In this example, only
the changes in ∆2,1 are visible to the workflow. Nonetheless, when W2 executes,
m21 reads state S4(R); as state S2(R) was the last one managed by the workflow
system, we know that ∆4,2 (∆4,3 +∆3,2) was performed by external agents.

2.3 Enabling Reproducibility

When a workflow manipulates data in a database, to ensure reproducibility, it
is necessary to take into account the database states, since different database
states might lead to different results (see Fig. 1a). In our model, database states
are uniquely identified and made explicit in the provenance as input and output
for the workflow. Because states before the execution of a module are captured
in the provenance, by re-enacting the workflow instance using the stored state,
it is possible to reproduce its results. Consider, for example, workflow W2 of
Fig. 2. Reproducing this workflow instance is possible because we have recorded
the following information:

fm21
(I21, [R, T4(R)]) = < O21, [R, T4(R)] >

In this case, if the current state of relation R is not S4(R), module m21

needs to retrieve data from R as if R were in this state. Because we know that
the transaction time for the original execution was T4(R), we can retrieve the
corresponding state S4(R). Then, m21 can use this state in its execution, and
the results can be correctly reproduced.

2.4 Querying Provenance

With workflow and database provenance integrated, it is possible to perform
queries that straddle the workflow and database systems. Below, we use examples
to illustrate different queries that are supported by the integrated model.

Lineage of an output. Consider Fig. 2. Using our model, through the set of
workflow connections and links to the database states, we can trace the complete
provenance of output O14, which includes information about both input data I11
and database state S1(R), which is used to produce outputs that are fed into
m14.

lineage(O14) = {W1, I11, [R, T1(R)]}



Towards Integrating Workflow and Database Provenance 9

Another important benefit of our model is that the combined provenance
includes information about changes to the database which may affect the results
of the workflow, even though they may not be directly observed by the workflow
system. Consider for example a query to find the lineage of output O23. Even
though the changes in∆3,2(R) were performed by agents external to the workflow
system, the set of operations are present in the backlog and can thus be retrieved
from the database. In addition, by following the provenance links, we can also
infer that states S1(R) and S2(R), as well as workflow W1 with input I11, have
contributed to O23.

Lineage of a database state. Consider module m13 in Fig. 2. The function cor-
responding to this module that is stored as provenance is shown in Equation 9.
From this function, we can infer that the output of m13 (O13) depends on its
input (I13) as well as on state S1(R) (T1(R)). Besides, we can also infer that
state S2(R) is derived by this module using input I13 and state S1(R). In this
case, we have the following:

lineage(S2(R)) = {W1, fm13
, I13, [R, T1(R)]}

Note that, as we have both T1(R) and T2(R), we can not only retrieve S1(R)
and S2(R) from S(R), but also ∆2,1(R). Consequently, it is also possible to
construct answers that include fine-grained information about the effect of m13

on relation R. In other words, we know exactly which tuples were inserted,
updated or deleted by m13.

Lineage of a tuple. Using our model, it is also possible to retrieve the lineage
of individual tuples. Given a tuple s inserted in the database by a workflow, we
compute its lineage as follows. First, we search the backlog relation for s. By
using its unique identifier K (Definition 2), a select operation can be performed
in the backlog relation to get the set of transaction times T associated with s.
Then, we search for each transaction time in Ti ∈ T in the set M of the modules
in workflow instance W . If Ti is an output, and not an input, of function fm, it
means that fm created the state identified by Ti, i.e., fm modified s. In this case,
W and fm are included in the lineage of s. We can also retrieve Op from the
backlog relation to know exactly what was the modification that fm performed
in s.

How-provenance. If a workflow module modifies a relation R, using our model,
it is possible to identify exactly which modifications were performed. As we can
retrieve the set ∆j,i(R) of modifications from the backlog, we know exactly how
a module modified the relation from Si(R) to Sj(R).

3 Implementation

As a proof-of-concept for our model, we have implemented it using the VisTrails
system [7, 16] and the Oracle RDBMS [14]. VisTrails is workflow-based data



10 F. Chirigati and J. Freire

exploration system that provides support for provenance. Oracle is a leader in the
relational database market and in their released system, they support temporal
database features. Notably, the Total Recall [15] sub-system makes it possible
to automatically track every change to the database as well as to query the
historical information. Once the Total Recall option is enabled for a relation
in the database, an append-only history table is created, which keeps track of
the tuple-level changes applied to the relation. Like in the backlog scheme [11],
each change to the relation recorded in the history table is identified by the
transaction time of the modification.

An interesting aspect of Oracle Total Recall is the ability to query in a
relation as of a time in the past. Given an identifier to a time in the past, Total
Recall recovers the state associated with this time so queries can be performed.
The identifier can be either a timestamp or a system change number (SCN),
which is an integer that uniquely maps to a timestamp. Total Recall also allows
the user to query versions of the relation within a time range, which includes all
the modifications that occurred within that range. The syntax of these queries
in SQL is as follows:

SELECT "column_name" FROM "table_name"

AS OF "time"

SELECT "column_name" FROM "table_name"

VERSIONS BETWEEN "time_1" AND "time_2"

Note that querying as of a time in the past is similar to retrieving a state
from S(R) given its corresponding transaction time. Consequently, this syntax
can be used to reproduce previous results. Also, querying between ranges of time
is similar to retrieving the difference between states, i.e., the delta (∆).

The VisTrails Total Recall Package. To support the integration between
VisTrails and Oracle Total Recall provenance, we have created a Total Recall
package for VisTrails3. This package consists of three modules: DBConnection,
CloseDBConnection and OracleSQLSource. The first two modules are used to
open and close a connection with an Oracle database, respectively. The third one
is the module used to execute commands in the database. We assume that this
module corresponds to the execution of a single transacation.4 When OracleSQL-
Source is executed, it automatically retrieves from the database provenance the
transaction times, represented as SCN, associated with states before and after its
execution (Tb(R) and Ta(R)). This information is then recorded in the workflow
provenance.

3 For more information about package creation in VisTrails, we refer the reader to the
VisTrails’ Users Guide [17].

4 Note that if multiple transactions are required, they can be modeled using multiple
modules.



Towards Integrating Workflow and Database Provenance 11

Fig. 3: Users may request workflows to be reproduced through the VisTrails
provenance exploration interface.

So that users can reproduce prior workflow executions, we have extended
the VisTrails provenance exploration interface: a user can select a particular
execution and request it to be reproduced by clicking on the reproduce button
(see Fig. 3). When users request to reproduce a workflow execution, the pack-
age checks the transaction times for the modules in the workflow that access
the database. To simplify the discussion, let us assume there is only one such
module. If Tb = Ta, it means that the transaction only retrieves data from the
relation. For this case, the original query is automatically rewritten: the “AS
OF” construct is used to ensure that the query will be run over the database
state associated with Tb. It is important to note that the query rewrite is trans-
parent to the user. Fig. 4 illustrates this process. The module OracleSQLSource
performs a select operation over the relation mountaineers. When the workflow
is executed (Fig. 4a), transaction times before and after the module execution
are retrieved from the database provenance (Tb = Ta = 19546). When the work-
flow instance of Fig. 4a is reproduced (Fig. 4b), the system first detects that
both Tb and Ta are the same; then, the module automatically modifies the query
to retrieve the state associated with SCN = 19546.

If Tb < Ta, it means that the workflow module modified the relation. In
theory, an approach similar to the read-only queries could be used. However, in
practice, this operation is more complicated and its performance depends on the
implementation of the underlying database system. The reason for this is the fact
that, for the update to be re-applied, the original state must be reconstructed



12 F. Chirigati and J. Freire

(a) (b)

Fig. 4: When the workflow is executed (a), transaction times before and after the
execution are retrieved. If this workflow instance is to be reproduced (b), the
transaction times are detected to be the same, and then, the query is modified
so the correct state can be used.

and materialized: all transactions that committed between Ta and Tb must be
rolled back. If there are many such transactions, this operation can be time
consuming.

4 Conclusion and Future Work

In this paper, we present a model that integrates database and workflow prove-
nance. Inspired by work on transactional temporal databases, to bridge the gap
between the stateless model of scientific workflow systems and stateful databases,
our model explicitly captures and stores information about the database states
observed by workflows. With this additional information, it is possible not only
to reproduce workflow executions, but also to support lineage queries that go
across provenance information in a database and workflow system. We have also
described a prototype implementation of our model using the VisTrails system
and the Oracle RDBMS. This implementation provides evidence that our ap-
proach is practical.

While this work provides a first step towards a solution to integrate work-
flow and database provenance, there are several problems we plan to address in
future work. Notably, we would like to further investigate query languages and
interfaces for querying the integrated provenance, as well as efficient strategies to
evaluate these queries. Our model enables a rich set of queries over the combined
provenance. However, some of these queries might be costly to evaluate. Query-
ing the lineage of a tuple, for instance, can take a long time if we have a large
set of modules M in the workflow instance W . This problem is compounded for
queries that involve multiple workflow instances. Another potentially interest-
ing aspect to consider are changes to the structure of relations, i.e., the data
definition language (DDL) operations, which are not captured in the backlog
scheme.



Towards Integrating Workflow and Database Provenance 13

Acknowledgments. We thank Dieter Gawlick and Venkatesh Radhakrishnan
for insightful discussions on the Oracle Total Recall option and for their guidance
in the implementation of our prototype. We also thank Jan Van den Bussche for
his feedback on our initial ideas for the integrated model.

References

1. Acar, U., Cheney, J., Bussche, J.V.D., Vansummeren, S., Buneman, P., Kwas-
nikowska, N.: A graph model of data and workflow provenance. In: Proceedings of
the USENIX Workshop on the Theory and Practice of Provenance (TaPP). p. 11
(2010)

2. Amsterdamer, Y., Davidson, S.B., Deutch, D., Milo, T., Stoyanovich, J., Tannen,
V.: Putting lipstick on pig: enabling database-style workflow provenance. Proceed-
ings of VLDB Endowment 5(4), 346–357 (Dec 2011)

3. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and
where. Foundations and Trends in Databases 1(4), 379–474 (2009)

4. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-
portunities. In: Proceedings of the ACM SIGMOD. pp. 1345–1350 (2008)

5. A matter of time: Temporal data management in DB2 for z/OS (2010)
6. Fomel, S., Claerbout, J.: Guest editors’ introduction: Reproducible research. Com-

puting in Science & Engineering 11(1), 5–7 (Jan-Feb 2009)
7. Freire, J., Koop, D., Santos, E., Scheidegger, C., Silva, C., Vo, H.T.: The Archi-

tecture of Open Source Applications, chap. VisTrails. Lulu.com (2011)
8. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks:

A survey. Computing in Science and Engineering 10(3), 11–21 (2008)
9. Gawlick, D., Radhakrishnan, V.: Fine grain provenance using temporal databases.

In: In Proceedings of the USENIX Workshop on the Theory and Practice of Prove-
nance (TaPP) (2011)

10. Huq, M.R., Wombacher, A., Apers, P.M.G.: Facilitating fine grained data prove-
nance using temporal data model. In: Proceedings of the International Workshop
on Data Management for Sensor Networks (DMSN). ACM (2010)

11. Jensen, C.S., Soo, M.D., Snodgrass, R.T.: Unifying temporal data models via a
conceptual model. Information Systems 19, 513–547 (1993)

12. Koop, D., Santos, E., Bauer, B., Troyer, M., Freire, J., Silva, C.T.: Bridging work-
flow and data provenance using strong links. In: Proceedings of SSDBM. pp. 397–
415 (2010)

13. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the ACM SIGMOD. pp.
1099–1110 (2008)

14. Oracle database, http://www.oracle.com/technetwork/database/

enterprise-edition/overview

15. Oracle total recall with oracle database 11g release 2 (2009)
16. The VisTrails Project, http://www.vistrails.org
17. The VisTrails Users’ Guide, http://www.vistrails.org/usersguide


