Data Polygamy: The Many-Many Relationships among Urban Spatio-Temporal Data Sets

Fernando Chirigati

Harish Doraiswamy Theodoros Damoulas

New York University

New York University

University of Warwick Alan Turing Institute

Juliana Freire

New York University

THE UNIVERSITY OF WARWICK

Data Exhaust from Cities

Infrastructure

Environment

People

Opportunity: make cities more efficient and sustainable, and improve the lives of citizens

While understanding NYC...

- 1. Would a reduction in traffic speed reduce the number of accidents?
- 2. Why it is so hard to find a taxi when it is raining?

It's pouring rain. You're running late. You desperately want to take a cab to the office. But, of course, there are none to be found. Happens all the time, right? Right, says science — or, to be specific, a new and exhaustive economic analysis of New York City taxi rides and Central Park meteorological data.

While understanding NYC...

- 1. Would a reduction in traffic speed reduce the number of <u>accidents</u>?
- 2. Why it is so hard to find a taxi when it is raining?
- 3. Why the number of <u>taxi trips</u> is too low? Is this a data quality problem?

Urban Data Interactions

Uncovering **relationships** between data sets helps us better understand cities!

Urban Data Sets are very **Polygamous**!

Data is available...

... but it's too much work! **Big** urban data!

1,200 data sets (and counting)

> 300 data sets are **spatio-temporal**

8 attributes per data set

> 200 attributes

Where to start? Which data sets to analyze?

Goal: Relationship Queries

Find all data sets **related** to a given data set D

Guide users in the data exploration process Help identify connections amongst disparate data

Q: Would a reduction in traffic speed reduce the number of accidents? Find all relationships between Collisions and Traffic Speed data sets

Q: Why the number of taxi trips is too low? Find all data sets related to the Taxi data set

Challenges

1) How to define a *relationship* between data sets?

Challenges

1) How to define a *relationship* between data sets?

Relationships between interesting *features* of the data sets

Relationships must take into account both *time* and *space*

Conventional techniques (Pearson's correlation, mutual information, DTW) cannot find these relationships!

Challenges

2) Large data complexity: **Big** urban data

Many, many data sets ! Data at multiple spatio-temporal resolutions

Relationships can be between any of the attributes Many attributes! ≈2.4 million possible relationships among NYC Open Data alone for a single spatio-temporal resolution

 $\prod meaningful relationships \longleftrightarrow needle in a haystack$

1) How to define a relationship between data sets? **Our solution:** *Topology-based relationships*

1) How to define a relationship between data sets? **Our solution:** *Topology-based relationships*

Why topology?

✓ Naturally captures the features of the data

1) How to define a relationship between data sets? **Our solution:** *Topology-based relationships*

Why topology?
✓ Naturally captures the features of the data
✓ Works on data in any resolution or dimension
✓ Very efficient

1) How to define a relationship between data sets? **Our solution:** *Topology-based relationships*

Key Techniques:

✓ Use of *topological persistence* to automatically compute thresholds (data-driven approach)

1) How to define a relationship between data sets? **Our solution:** *Topology-based relationships*

Key Techniques:

- ✓ Use of *topological persistence* to automatically compute thresholds (data-driven approach)
- ✓ *Merge Tree Index* to identify topological features

2) Large data complexity **Our solution:** *Monte Carlo significance tests*

Why?

✓ Removes potentially coincidental relationships

Significantly reduces the number of relationships the user needs to analyze !

Summary of Experiments

Data Polygamy implemented using *Hadoop*

Performance

- Framework can evaluate relationships at a rate greater than 10K relationships per minute
- Using significance tests: decrease of around 99% on the number of output relationships!
- Approach is robust to noise

(Some) Interesting Relationships

1. Would a reduction in traffic speed reduce the number of accidents?

By Carr Positive relationship between number Positive relationship between number

Traffic Speed

2. Why it is so hard to find a taxi

Taxi FarePrecipitationImage: Constraint of the second sec

Collisions

Strong positive relationship between Taxi drivers are target earners!

Intelligencer

Things to Know About NYC's New 25-Miles-Per-Hour Speed Limit

By Caroline Bankoff 🔰 Follow @teamcaroline

http://nymag.com/daily/intelligencer/2014/11/things -to-know-about-nycs-new-speed-limit.html

181063216 Photo: Getty Images

Last week, Mayor de Blasio <u>signed a law</u> lowering New York City's 30miles-per-hour speed limit to 25. The change is the centerpiece of de Blasio's <u>Vision Zero</u> plan to drastically reduce New York City traffic deaths,

(Some) Interesting Relationships

3. Why the number of taxi trips is too low?

Taxis Precipitation

Negative relationship between number of taxis and average precipitation

Many more details and experiments in the paper!

... but feel free to talk to us!

I DATA POLYGAMY

Code, data, and experiments available at:

https://github.com/ViDA-NYU/data-polygamy

Acknowledgments: Funding: National Science Foundation, Moore-Sloan Data Science Environment at NYU, DARPA, and Alan Turing Institute

Insightful comments and suggestions from Divesh Srivastava and anonymous reviewers

Thank you!

Additional Material

Opportunity: make cities more efficient and sustainable, and improve the lives of citizens

Scalar Functions

- Each data set represented as a time-varying scalar function
 - $f:[\mathbb{S}\times\mathbb{T}]\to\mathbb{R}$
 - Maps each point in the domain (city) over time to a scalar value

S: High Resolution Grid

Scalar Functions

- Two types of scalar functions: *count* and *attribute*
- Count functions
 - Capture the activity of an entity corresponding to the data
 - Density function
 - E.g.: no. of taxi trips over space and time
 - Unique function
 - E.g.: no. of distinct taxis over space and time
- Attribute functions
 - Capture variation of the attribute
 - E.g.: average taxi fare over space and time
- Functions are computed at all possible resolutions

- Topological features of the scalar function
 - Neighborhoods of critical points

- Topological features of the scalar function
 - Neighborhoods of critical points

- Topological features of the scalar function
 - Neighborhoods of critical points

- Topological features of the scalar function
 - Neighborhoods of critical points
- Neighborhood defined by a threshold

- Topological features of the scalar function
 - Neighborhoods of critical points
- Neighborhood defined by a threshold
 - Positive Features

- Topological features of the scalar function
 - Neighborhoods of critical points
- Neighborhood defined by a threshold
 - Positive Features

- Topological features of the scalar function
 - Neighborhoods of critical points
- Neighborhood defined by a threshold
 - Positive Features
 - Negative Features
- Represented as a set of spatio-temporal points

Computing Topological Features

- Index: Merge Tree
 - Topological data structure
 - Tracks evolution of the topology of level sets
 - Data can be of any dimension
- Output-sensitive time complexity
- Feature thresholds are computed in a data-driven approach
- Features are computed at all possible resolutions

Topological Thresholds

- π is the persistence value
 - E.g.: π_8 has v_8 as creator and v_1 as destroyer

Salient Features

• Relationship between features

- Relationship between features
 - Related features
 - Positive Relationship

- Relationship between features
 - Related features
 - Positive Relationship

- Relationship between features
 - Related features
 - Positive Relationship
 - Negative Relationship
- Defined w.r.t. features
 - Spatio-temporal points that are features in both functions

- Relationship between two functions
- Relationship Score (*T*)
 - How related the two functions are
 - Captures the nature of the relationship

Negative Relationship

- Relationship between two functions
- Relationship Score (*T*)
 - How related the two functions are
 - Captures the nature of the relationship
- Relationship Strength (ρ)
 - How often the functions are related

Weak Relationship

- Relationship between two functions
- Relationship Score (*T*)
 - How related the two functions are
 - Captures the nature of the relationship
- Relationship Strength (ρ)
 - How often the functions are related
- Significant relationships
 - Monte Carlo tests filter potentially coincidental relationships

• Relationship Score

$$\tau = \frac{\#p - \#n}{|\Sigma|}$$

- #p no. of positively feature-related points
- #n no. of negatively feature-related points
- Σ set of feature-related points
- \boldsymbol{r} close to 1 \Rightarrow positive relationship
- \boldsymbol{r} close to -1 \Rightarrow negative relationship

Relationship Strength

 $\rho = F_1(f_1, f_2) = 2 \times \frac{precision \times recall}{precision + recall}$

- Σ_1 set of points that are features in f_1
- Σ_2 set of points that are features in f_2 Let x be a spatio-temporal point:
 - \mathfrak{A} Σ_1 and \mathfrak{A} $\Sigma_2 \Rightarrow$ true positive
 - $\mathfrak{X} \quad \Sigma_1 \text{ and } \mathfrak{X} \quad \Sigma_2 \Rightarrow \text{false positive}$
 - $\not \propto \Sigma_1$ and $\not \propto \Sigma_2 \Rightarrow$ false negative
 - *p* close to 1 ⇒ strong relationship: a feature in one function almost always indicate a feature in the other function

Efficiency

- NYC Open Data
 - Index created and features computed for all possible resolutions
 - Query: Find all relationships among the given subset of data sets

Scalability

• NYC Urban on AWS

Relationship Pruning

- Query
 - Find all relationships among the given subset of data sets
 - (week, city) resolution

Robustness

- Evaluation using the density of taxi trips
 - Random Gaussian noise; noise amount bounded by a fraction of the inter-quartile range of the function

