Aws re:Invent

Data Polygamy The Many-Many Relationships among Urban Spatio-Temporal Data Sets

Fernando Chirigati, Harish Doraiswamy, Theodoros Damoulas, Juliana Freire

Big Urban Data: What's the Big Deal?

Cities are the loci of economic activity

50% of the world population lives in cities By 2050, this number will grow to 70%

Growth leads to many problems

Data is the light at the end of the tunnel

Data Exhaust from Cities

Infrastructure

Environment

Photo by MTA

People

While Exploring NYC Data...

- 1. Would a reduction in traffic speed reduce the number of accidents?
- 2. Why it is so hard to find a taxi when it is raining?

mölligencer Why You Can't Get a Taxi W	hen It's Raining	
y Annie Lowrey Follow @AnnieLowrey	1.12	
	- North	
Good luck, lady. Photo: Jacobs Stock Pho t's pouring rain. You're running late. You de	http://nymag.com/daily/intelligencer/2014/11/ why-you-cant-get-a-taxi-when-its-raining.html	
o the office. But, of course, there are none to ime, right? Right, says science — or, to be spe conomic analysis of New York City taxi rides a neteorological data.	e tound. Happens all the cific, a new and exhaustive and Central Park	

While Exploring NYC Data...

- 1. Would a reduction in traffic speed reduce the number of accidents?
- 2. Why it is so hard to find a taxi when it is raining?
- 3. Why the number of taxi trips is too low? Is this a data quality problem?

Urban Data Interactions

Uncovering **relationships** between data sets helps us better understand cities

Urban data sets can be very **Polygamous**!

Data are available... ... but we are talking about **big** data!

1,200 data sets (and counting)

Where to start? Which data sets to analyze?

> 300 data sets are **spatio-temporal**

Which spatio-temporal slices to analyze?

Goal: Relationship Queries

Find all data sets **related** to a given data set D

Guide users in the data exploration process Help identify connections amongst disparate data Identify important variables

Q: Would a reduction in traffic speed reduce the number of accidents? Find all relationships between Collisions and Traffic Speed data sets

Q: Why the number of taxi trips is too low? Find all data sets related to the Taxi data set Hypothesis Testing

Hypothesis Generation

Challenges

% NYU

1) How to define a *relationship* between data sets?

Challenges

1) How to define a *relationship* between data sets?

Relationships between interesting *features* of the data sets

Relationships must take into account both *time* and *space*

Conventional techniques (Pearson's correlation, mutual information, DTW) cannot find these relationships!

Challenges

2) Large data complexity: Big urban data

Many, many data sets! Data at multiple spatio-temporal resolutions Relationships can be between any of the attributes

8 attributes per data set

> 200 attributes

Combinatorially large number of relationships to evaluate ≈2.4 million possible relationships among NYC Open Data alone for a single spatio-temporal resolution

 $meaningful relationships \longleftrightarrow$ needle in a haystack

Our Approach: Data Polygamy

1) How to define a relationship between data sets?

Our solution: *Topology-based relationships*

2) Large data complexity

Our solution: *Implementation using map-reduce*

Topology-based Relationships

Topological Features

Valleys

Peaks

Critical Points

Scalar Functions

Each data set represented as a *time-varying scalar function*

 $f:[\mathbb{S}\times\mathbb{T}]\to\mathbb{R}$

Maps each point in the domain (city) over time to a scalar value

Scalar Functions

Each data set represented as a *time-varying scalar function*

 $f:[\mathbb{S}\times\mathbb{T}]\to\mathbb{R}$

Maps each point in the domain (city) over time to a scalar value

 $\ensuremath{\mathbb{S}}$: High Resolution Grid

 ${\mathbb S}$: Neighborhood Resolution

Topological features of the scalar function

Neighborhoods of critical points

Topological features of the scalar function

Neighborhoods of critical points

Topological features of the scalar function

Neighborhoods of critical points

Topological features of the scalar function Neighborhoods of critical points Neighborhood defined by a threshold

Topological features of the scalar function Neighborhoods of critical points Neighborhood defined by a threshold Positive Features

Topological features of the scalar function Neighborhoods of critical points Neighborhood defined by a threshold Positive Features

Topological features of the scalar function Neighborhoods of critical points Neighborhood defined by a threshold Positive Features Negative Features Represented as a set of spatio-temporal points

Negative Feature

5 Boro Bike Tour

8am - 9am

May 1 2011

 Advantage

 2. Features can have arbitrary shapes

Index: Merge Tree

Computing Merge Tree O(n log n) Computing Features

Index: Merge Tree

Computing Merge Tree O(n log n) Computing Features

Index: Merge Tree

Computing Merge Tree O(n log n) Computing Features

Output-sensitive time complexity

Computing Feature Threshold

Feature thresholds are computed in a data-driven approach

- Uses topological persistence of the features
- "Life time" of the topological features
- Persistence can be efficiently computed using the merge tree

Computing Feature Threshold

Use persistence diagram

Plots "birth" vs "death"

- High persistent features form a separate cluster
- 2-means cluster

4. Robust to noise

Use the high persistent cluster to compute the threshold

Advantage

Relationship between features

Relationship between features

Related features

Positive Relationship

Relationship between features

Related features

Positive Relationship

Relationship between features

Related features **Positive** Relationship **Negative** Relationship

Relationship between two functions *Relationship Score: τ*

How related the two functions are Captures the nature of the relationship

Negative Relationship

Relationship between two functions *Relationship Score: τ*

How related the two functions are Captures the nature of the relationship

Relationship Strength: p

How often the functions are related

Weak Relationship

Relationship between two functions *Relationship Score: τ*

How related the two functions are Captures the nature of the relationship

Relationship Strength: p

How often the functions are related

Significant relationships

Monte Carlo tests filter potentially coincidental relationships

Topology-based Relationships

- Advantage

5. Works on data in any dimension

Topology: Advantages

1. Naturally captures interesting features

2. Features can have arbitrary shapes

3. Very efficient

4. Robust to noise

5. Works on data in any dimension

The Data Polygamy Framework

Implementation

All the steps are embarrassingly parallel

Framework implemented using *map-reduce*

Scalar Functions

Two types of scalar functions: count and attribute

Count functions E.g.: no. of taxi trips over space and time

no. of unique taxis over space and time

Attribute functions

E.g.: average taxi fare over space and time

Other functions can also be added! E.g.: gradient function

Functions are computed at all possible resolutions *E.g.:* data available in (GPS, seconds) can be translated to [grid, neighborhood, city] x [hour, day, week, month]

Map: data points mapped to different resolutions

Reduce: data is aggregated for each resolution

Map: for each data set, scalar functions are taken individually

Reduce: for each function, the merge tree index is created and the features are identified for all resolutions

Merge trees are saved!

Relationship Querying

Querying for relationships

Find all data sets related to data set **D** satisfying **CLAUSE**

Only statistically significant relationships are returned CLAUSE can be used to filter relationships w.r.t. r and ρ .

Significantly reduces the number of relationships the user needs to analyze Goal: **guide** users in the data exploration process

Additional Information

Software Framework: Apache Hadoop 2.2.0

Distributed File System: HDFS

Compression (BZip2 or Snappy Codec) can be used for map outputs

Framework runs on AWS

Performance Evaluation

Goal

Efficiency, scalability, robustness

Data

NYC Open Data: 300 spatio-temporal data sets

Hardware

20 compute nodes, AMD Opteron(TM) Processor 6272 (4x16 cores) running at 2.1GHz, 256GB of RAM – *for most experiments Amazon EMR:* m1.medium (for master) and r3.2xlarge (for slaves) – *for scalability tests*

Performance Evaluation: Results

200 mins to compute scalar functions and features for NYC Open Data

Using significance tests: decrease of around **99%** on the number of output relationships!

Can evaluate > 10K relationships/min

Performance Evaluation: Results

Approach is **robust** to noise

Approach is **scalable**

Qualitative Evaluation

Goal

Does the approach uncover interesting, non-trivial relationships?

Data

NYC Urban: 9 data sets from NYC agencies

1. Would a reduction in traffic speed reduce the number of accidents?

Find all relationships between Collisions and Traffic Speed data sets

2. Why it is so hard to find a taxi when it is raining? Find all relationships between Taxi and Weather data sets

Negative relationship between number of taxis and average precipitation

Hypothesis: Taxi drivers are target earners

Precipitation

→ Indicates that hypothesis is true

Strong positive relationship between precipitation and average fare

A recent study¹ refuted this hypothesis

¹ H. S. Farber. Why You Can' t Find a Taxi in the Rain and Other Labor Supply Lessons from Cab Drivers. Technical Report 20604, National Bureau of Economic Research, 2014.

3. Why the number of taxi trips is too low?

Find all data sets related to the Taxi data set

Negative relationship between number of taxis and wind speed

Negative relationship between number of taxis and average precipitation

Citi Bike and Weather

Negative relationship between snow precipitation and active Citi Bike stations

(day, city) ✓ (hour, city) ♡

Many other relationships...

~ 100 significant relationships per resolution

Over 35 interesting relationships

More relationships (and their implications) can be understood by having domain experts

Weather data set is the most *polygamous*!

🌾 NYU

Conclusion

Data Polygamy – discover and explore relationships in large collections of data sets

Relationships are based on the topology of the data Relationships between salient features Take into account both time and space

Framework implemented using *map-reduce* Efficient and scalable Interesting (and surprising!) relationships could be found

Querying for relationships is just the beginning...

Lessons Learned

It's hard to evaluate!

No ground truth available

- Need benchmark
- Need real use cases from domain experts

Too many relationships!

How to explore and analyze them?

I DATA POLYGAMY

Code, data, and experiments available at: https://github.com/ViDA-NYU/data-polygamy

"Data Polygamy: The Many-Many Relationships among Urban Spatio-Temporal Data Sets", F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire. In Proceedings of the 2016 ACM SIGMOD International Conference on Management of Data (**SIGMOD**), pp. 1011-1025, 2016

Thank you!

re:Invent

Questions?

Acknowledgments: National Science Foundation, Moore-Sloan Data Science Environment at NYU, DARPA, and Alan Turing Institute

