Constructing a Social Network Analysis System for SIGMOD 2014 Programming Contest
VIDA Team: Fernando Chirigati®, Kien Trung Pham?, and Tuan-Anh Hoang-Vu-

W

J

-~

 Construct a social network analysis system that can
execute a set of queries as quickly as possible and
output results to standard output

TASK

Queries
* 4 types of queries provided in a text file
* Perform tasks that require graph search

Data

« Datasets (a total of 31) from the LDBC social network

benchmark generator: https://github.com/ldbc/
ldbc_socialnet_bm

« Different social network sizes are tested: small (1K
persons), medium (10K persons), large (100K persons),
and huge (1M persons)

Evaluation Environment
* Processor:
« Configuration:

2.67 GHz Intel Xeon E5430
2 processors (8 cores at total)

« L2 Cache Size: 12 MB

* Main Memory: 15 GB

* Operating System: RHE Linux Server 6.5
 Compiler: GCC 4.4.7

QUERY PRE-PROCESSING

* Input queries may come in any order

» System internally sorts queries by query type
 Repeated queries are detected and processed only once
* QOriginal order is preserved in the output

1/0 AND DATA STRUCTURES

 We use memory mapped files from Boost to improve the
|/0 performance for large files

« Whenever possible, static allocation,
dynamic allocation, is used

» Size of a data structure is estimated based on the size
of the dataset file to pre-allocate memory

* Arrays and vectors are preferred over maps and sets

* Graphs are constructed using a compact adjacency list
representation

rather than

Adjacency List

Edge Index

1\ /
\

3

1

« Some data structures are used across all query types

* They are initialized when the system starts and then
shared among all queries

E.g.: Persons and Tag information, Persons Graph

~

Main

Vertices

Supervised by Huy T. Vo2
1. NYU Polytechnic School of Engineering | 2. Center for Urban Science and Progress (CUSP)

THE MS-BFS TECHNIQUE

Initialize visited vertices listV, ;

For hop h=1... k (i.e.: until all vertices are visited):
Initialize queue Q, ;
For each vertex u in V:

If Q_.[u]l == 0, continue; e Oy
For each neighbor v of u: O(k*2* |E|) =
Qv] |= Q. [u] & ~V,I[v]; O(k * [E])
Vvl |= Q,[v];
Hop =0 Hop =1 Hop =2
Concurrent
20 > | Neighbors of 0 Neighbors of 1 Neighbors of 2 Neighbors of 3
o[x] 0 0 _ 0 NG
1 1 1 1 1
2 2 2 2 2
3 3 3| X 3 3
Y
Q, Q, Q,
00X 0X 01X 0 0
1 X 1 X 1 X 1 1
2 2 X 21X|X 2 2
3 3(X 31X 3 3
V, V, V, v, V,

To speed up BFS computations, we have developed a
technique that takes advantage of SIMD instructions and
bit operations to efficiently execute multiple BFS
concurrently in a single thread - the Multiple-Sources
BFS, or simply MS-BFS:

« Given a fixed graph, multiple BFS can be executed
concurrently without the need of a locking mechanism
or multiple threads

« Bit masks and bit operations are used for efficiency
* 64-bit mask: 64 concurrent BFS

« Time complexity for 64 BFS is O(|E|) for dense
graphs, while the usual algorithm takes O(|V|+|E])
for a single BFS

* Since queues may overlap, vertices can be “shared”
and visited only once for multiple concurrent BFS

MULTITHREADING STRATEGY

Initialize Data
Structures for Query 3
l Initialize Data Structures for Query 4 '
| Initialize Data Structures for Query 2 '
| Initialize Data Structures for Query 1 '

; i Y Y Y Y
Initialize Shared Initialize Execute Print Results
Execute Query 3 Execute Query 4 Execute Query 1
Thread ‘ Data Structures ‘ Data Structures ‘ y ‘ y ‘ Query 2 ‘ y ‘ to stdout '
\4 8 \'4 5 \ 4 3

8 Threads 8 Threads 8 Threads

We use Boost to support multithreading in the system

We use inner multithreading (i.e.: inside each query
type) rather than outer multithreading (i.e.: across
different query types) for executing queries

* Initializing data structures for query type 1 is a
oottleneck, since its I/0 is time-consuming

|t provides a better use of resources
 Evaluation environment has 8 cores

N

QUERY TYPE 1

Shortest Distance over Frequent Communication Paths

Given two person ids p1 and p2, and an integer X, find the
minimum number of hops between p1 and p2 in the graph

induced by persons who: (i) have made more than x
comments in reply to each others’ comments, and (ii) know
each other.

Persons Graph +
Weighted Edges

l

— Remove edges > | MS-BFS | — Results

24 — with weight <= -1
, 7/
4
4
, 7/
:_ ’ d XxX=0 Y
— — Remove edges
— - Result
s > = ’ with weight <=0 —> | MS-BFS | —> Results
Type1 . }
\ ° ~ = . . .
N\
\ . l
\ . x =N
A = Remove edges
— : with weight <= N —> | MS-BFS | —— Results

* Run BFS for each query

 Number of comments between two persons is added as
a weight to the corresponding edge in Persons Graph

* Group queries by x so that the graph can be
incrementally reduced, which improves the performance
of the BFS

» 8 threads are used for query type 1, and each thread
executes one MS-BFS

* 512 queries are executed concurrently

QUERY TYPE 2

Interests with Large Communities

Given an integer k and a birthday d, find the Kk interest
tags with the largest connected component in the graph

induced by persons who: (i) have that interest tag, (ii)
were born on d or later, and (iii) know each other.

Partial Sort (k)

birthday
<€
tag, P 1P,|P,|P,|P,

111121313 - | —

0. 0.0.0. 0. size of the largest
I I e connected component Binary Search (d)
:Q:I: @ < Query 2 (k, d)
A A ¢
| 1 I | |
AN » Top-kresults

0

tagz Pr Pz P3 4P5
112131313

Pre-Computation

* Pre-compute the size of the largest connected

components for each tag prior to query execution

 List of persons who are interested in the tag is sorted
in decreasing order of birthday

* Pre-computation done incrementally and with respect
to the sorted list: for each person, calculate the size
of the largest connected component up to that person

* For each query, binary search is used to get the size of

the largest component for each tag

~

W

J

/ QUERY TYPE 3 \
Socialization Suggestion

Given an integer k, a maximum hop count h, and a place
name p, find the top-k pairs of persons based on the
number of common interest tags. For each of the k pairs,
the two persons must be located in p, or study or work at
organizations in p. Furthermore, these two persons must
be no more than h hops away from each other.

Priority Queue

Places

Persons Sorted
by No. of Interest Tags

* For each person in p, run a BFS to get pairs of persons,
respecting the constraints of p and h; a priority queue of
size k maintains the top-k pairs

« A graph of places is used to find persons in p
* Persons are read in decreasing order of number of tags

« Early termination: stop when number of tags of the
upcoming person is less than the current minimum of the
queue

* Queries are processed sequentially, and 8 threads are
used for each query - each thread has its own queue

* Queues are merged at the end of the execution

QUERY TYPE 4

Most Central People

Given an integer k and a tag name t, find the k persons
who have the highest closeness centrality values in the
graph induced by persons who: (i) are members of forums
that have tag name t, and (ii) know each other.

P

1

Persons
— | Create Induced E New Persons P) —
Graph ‘ Graph ' Graph 2 i MS>-BFS |
P

2/ 3
Forum and Tag .
Information

Priority Queue

- Closeness Centrality of P

cc(P)=(r(P)- 1) *(r(P) - 1) P,
(n-1)*s(P)

Persons Sorted in
Decreasing Order of Degree

* Run one BFS per person in the induced graph to compute
the closeness centrality

» Persons are sorted in decreasing order of their degree

* MS-BFS is executed respecting this order and
maintaining a priority queue for the top k results

» Early termination: stop BFS when the current
accumulated s(P) is greater than the current maximum
s(P) maintained in the queue

 |ntuition: persons with higher degree will have smaller
s(P), helping early-terminate a higher number of BFS

* Threading mechanism similar to query type 3
« 8 threads per query, and each thread has its queue

