
noWorkflow: Capturing and Analyzing
Provenance of Scripts?

Leonardo Murta1, Vanessa Braganholo1,
Fernando Chirigati2, David Koop2, and Juliana Freire2

1 Universidade Federal Fluminense
2 New York University

{leomurta, vanessa}@ic.uff.br,
{fchirigati, dakoop, juliana.freire}@nyu.edu

Abstract. We propose noWorkflow, a tool that transparently captures
provenance of scripts and enables reproducibility. Unlike existing ap-
proaches, noWorkflow is non-intrusive and does not require users to
change the way they work – users need not wrap their experiments in
scientific workflow systems, install version control systems, or instrument
their scripts. The tool leverages Software Engineering techniques, such as
abstract syntax tree analysis, reflection, and profiling, to collect different
types of provenance, including detailed information about the underly-
ing libraries. We describe how noWorkflow captures multiple kinds of
provenance and the different classes of analyses it supports: graph-based
visualization; differencing over provenance trails; and inference queries.

1 Introduction

While scripts are widely used for data analysis and exploration in the scientific
community, there has been little effort to provide systematic and transparent
provenance management support for them. Scientists often fall back on Work-
flow Management Systems (WfMSs), which provide infrastructure to automat-
ically capture the input, intermediate, and output data involved in computa-
tions, allowing experiments to be managed, assessed, and reproduced [12,16,18].
Although WfMSs play an important role in bridging the gap between experimen-
tation and provenance management, they have limitations that have hampered a
broader adoption, notably: moving to a new environment can be difficult and re-
quires a steep learning curve, and wrapping external scripts and libraries for use
in a WfMS is time-consuming. In addition, data analysis tasks that use multiple
tools require each to be integrated with the WfMS. When this is not possible
(or desirable), scientists often run scripts to orchestrate analyses and connect
results obtained from multiple tools.

Collecting provenance of scripts when not using a WfMS is challenging. First,
unlike most pipelines supported by dataflow-based systems, scripts can encode
a control flow and include cycles, which makes it more difficult to identify which
? The original publication is available at http://www.springerlink.com/

http://www.springerlink.com/

2 L. Murta et al.

functions contributed to the generation of a given data product. Second, deter-
mining the correct level of granularity to capture is hard : very fine-grained prove-
nance may overwhelm scientists with a large volume of data to analyze, while a
coarser granularity may omit important information. In contrast, workflows in a
WfMS have well-defined boundaries for such capture, which are determined by
how the underlying computational modules are wrapped. Finally, since scripts
run outside of a controlled environment such as a WfMS, one cannot make many
assumptions (e.g., the presence of a version control system) beyond the involve-
ment of source code and an interpreter/compiler, which makes it difficult to
track library dependencies and changes in files.

Some of the existing approaches that do not require a WfMS rely on scientists
to modify the experiment scripts to include annotations or calls to provenance
capture functions [1,3,7]. Such approaches are intrusive, time-consuming, and
error-prone. Others require scientists to use a version control system to track
changes to the source code, or are not entirely automatic, requiring input from
scientists [3,10]. There are also approaches that capture provenance at the oper-
ating system level [6,8,17], which monitor system calls and track processes and
data dependencies between these processes. These systems, however, do not have
visibility into what happens inside the scripts underlying the processes.

In this paper, we propose a new approach to capture provenance of scripts
that addresses the aforementioned challenges. We review the existing types of
provenance representation and argue that, in the absence of a controlled en-
vironment, a new kind of provenance – deployment provenance – is necessary
to capture detailed data about the underlying libraries. We then present no-
Workflow (not only Workflow), a tool that implements the proposed approach,
and describe how it transparently captures provenance of scripts, including con-
trol flow information and library dependencies. noWorkflow is non-intrusive and
relies on techniques from Software Engineering, including abstract syntax tree
analysis, reflection, and profiling, to collect different types of provenance with-
out requiring a version control system or an instrumented environment. The
tool supports three different types of analyses, including visualization and query
mechanisms, to help scientists explore the captured provenance and debug the
execution, as well as to enable reproducibility. Although noWorkflow was devel-
oped for Python, a language with significant adoption by the scientific commu-
nity, the ideas presented here are language-independent and can be applied to
other scripting languages.

2 Provenance of Scripts

WfMSs provide a controlled environment in which workflows are executed—the
workflow engine orchestrates the invocation of the computational modules of a
workflow. Since provenance is captured for these invocations, the provenance
granularity is determined by how computations are modeled inside the workflow
system, i.e., how libraries are wrapped. Scripts, in contrast, lack this well-defined
structure and the isolation provided by the workflow engine. Thus, to capture
the provenance of scripts, we have to address two important challenges: how to

noWorkflow: Capturing and Analyzing Provenance of Scripts 3

represent information about the environment and how to determine the level of
provenance granularity.

2.1 Provenance Representation

There are two types of provenance for scientific workflows: prospective and ret-
rospective [5]. Prospective provenance describes the structure of the experiment
and corresponds to the workflow definition, the graph of the activities, and their
associated parameters. Retrospective provenance captures the steps taken dur-
ing the workflow execution, and while it has similar (graph) structure, it is
constructed using information collected at runtime, including activities invoked
and parameter values used, intermediate data produced, the execution start and
end times, etc. The wrapping required by a WfMS to orchestrate the execution
of modules from a tool or library naturally creates a level of abstraction for the
execution: the module is a black box and its details are hidden. Because the
wrapped libraries are integrated with the WfMS, it is possible for the system to
track and control them, e.g., to detect that a wrapped library has changed and
to upgrade the workflows accordingly [13].

For scripts, this abstraction is absent. Therefore, it is important to capture
detailed information about the computational environment (e.g., library depen-
dencies and environment variables) where the script runs. Consider, for example,
the Python script in Figure 1, which runs a simulation to predict weather using
historical data about temperature and precipitation. For simplicity of exposi-
tion, the real (and expensive) simulation performed by simulate is defined in
a separate module (simulator) not shown in the example. This script depends
on 703 distinct modules, although only four are explicitly declared (lines 1–4).
Suppose we run the experiment script once and obtain a result. If later, software
is installed (or upgraded) that silently updates one of the modules on which
the experiment script depends, the next execution may produce a different re-
sult, even though its source code remains unchanged. If these dependencies are
not systematically captured, it may be difficult to understand why results are
different between executions that are apparently identical.

The provenance needed here is neither prospective nor retrospective, and it
needs to be captured right before execution. Borrowing terms from software en-
gineering, where software goes through three phases, i.e., definition, deployment,
and execution [9], we define three types of provenance needed for scripts:

– Definition Provenance captures the structure of the script, including function
definitions, their arguments, and function calls; it corresponds to prospective
provenance.

– Deployment Provenance captures the execution environment, including infor-
mation about the operating system, environment variables, and libraries on
which the script depends. As discussed before, this may change from one ex-
ecution to another, even if the source code remains the same. In addition, it
extends beyond dependencies a programmer explicitly defines, and the con-
crete library versions that are loaded depend on the deployment environment.

4 L. Murta et al.

01. import csv
02. import sys
03. import matplotlib.pyplot as plt
04. from simulator import simulate
05.
06. def run_simulation(data_a, data_b):
07. a = csv_read(data_a)
08. b = csv_read(data_b)
09. data = simulate(a, b)
10. return data
11.
12. def csv_read(f):
13. reader = csv.reader(open(f, ’rU’), delimiter=’:’)
14. data = []
15. for row in reader:
16. data.append(row)
17. return data
18.
19. def extract_column(data, column):
20. col_data = []
21. for row in data:
22. col_data.append(float(row[column]))
23. return col_data
24.
25. def plot(data):
26. # getting temperature
27. t = extract_column(data, 0)
28. # getting precipitation
29. p = extract_column(data, 1)
30. plt.scatter(t, p, marker=’o’)
31. plt.xlabel(’Temperature’)
32. plt.ylabel(’Precipitation’)
33. plt.savefig(’output.png’)
34.
35. # main program
36. data_a = sys.argv[1]
37. data_b = sys.argv[2]
38. data = run_simulation(data_a, data_b)
39. plot(data)

Fig. 1. Example of a Python script (simulation.py) that predicts temperature and
precipitation in the near future.

– Execution Provenance captures the execution log for the script (e.g., function
activations, argument values, and return values); it corresponds to retrospec-
tive provenance.

2.2 Provenance Granularity

As discussed above, in WfMSs, provenance is captured at the level of an activity,
and what happens inside an activity is not taken into account by the provenance
infrastructure. In contrast, such boundaries are not well-defined in the context
of scripts. Thus, an important question is how to determine the level of gran-
ularity at which to capture provenance for scripts. One alternative would be
to use approaches that capture provenance at the operating system level [6,17].
Since these systems intercept system calls (e.g., file reads and writes, execution
of binaries), they produce a high volume of very fine-grained information that
represent data dependencies between processes. It can be difficult to explore
this information and connect it to the underlying experiment specification. Con-
sequently, identifying which experiment activity influenced the generation of a

noWorkflow: Capturing and Analyzing Provenance of Scripts 5

given data product can be challenging. On the other hand, if we consider the
entire script as a black-box, and capture provenance at a coarse granularity, it
would be impossible to know which functions contributed to the generation of a
given data product.

We posit that functions in a script are a suitable choice for provenance
capture—this is most likely to be meaningful to users since it is closer to the
experiment specification. We note, however, that even this level may be over-
whelming. For instance, profiling the (very small and simple) script of Figure 1,
we observed 156,086 function activations. This includes functions called by func-
tions that are used in the main experiment script, such as plt.scatter (line 30).
Clearly, analyzing this volume of information is hard and time-consuming; an
alternative is to capture only the activations related to functions that are defined
by the programmer (i.e., that have user-defined functions as source or target).
In the example, this entails all activations related to the main program along
with functions run_simulation, csv_read, extract_column, and plot. This
approach significantly reduces the amount of captured information, and makes
it easier for users to keep track of what is happening throughout the execution.

3 noWorkflow

As a proof of concept, we built noWorkflow, a command line tool written in
Python that transparently captures provenance of Python scripts. Running no-
Workflow is as simple as running a Python script: now run <script>. In no-
Workflow, the execution of a given experiment script is called a trial. Each trial
is assigned a sequential identification number that is automatically generated.
Provenance for each trial is captured and stored for future analysis. The system
distinguishes a function call from a function activation: the former is related
to definition provenance and can be captured by statically analyzing the source
code while the latter is related to execution provenance. For example, in Figure 1,
data.append is a single function call (line 16), but it may have many activations
at runtime, with different arguments and return values, because it is inside a for
loop. In what follows, we describe how noWorkflow, in the absence of a controlled
execution environment, captures and stores the different types of provenance
(see Figure 2). We also discuss useful analyses that can be performed over script
provenance.

3.1 Provenance Capture

Definition Provenance. To capture definition provenance, noWorkflow uses
the abstract syntax tree (AST) of the script to identify all user function defi-
nitions, function calls, arguments, and global variables referenced in the script.
We chose user-defined functions as the granularity for provenance capture (Sec-
tion 2.2), and the AST is used to capture the source code of each function defini-
tion. In the example (Figure 1), the source code of run_simulation (lines 6-10)
is entirely stored, which allows the tool to monitor the evolution of each function
definition independently. In addition, noWorkflow stores the source code of the

6 L. Murta et al.

Python’s modules
(os, socket, platform,

modulefinder)
Profiling and

Reflection
AST

Analysis

DEFINITION PROVENANCE DEPLOYMENT PROVENANCE EXECUTION PROVENANCE

Provenance Capture

Provenance Storage

SQLite

Content Database

.noworkflow directory

stores

Provenance Analysis

reads

Provenance
Graph

Diff Analysis

Querying

Fig. 2. Architecture of noWorkflow.

entire script. All this information is associated with an experiment trial, thus
making it possible to know which function definitions belong to a specific trial.

Each function is then analyzed to capture the objects referenced inside it,
including arguments, function calls, and global variables. These objects are asso-
ciated with the corresponding function definition. Consider for example the func-
tion run_simulation in Figure 1: noWorkflow captures two arguments (data_a
and data_b, on line 6), and two function calls (csv_read on lines 7 and 8,
and simulate on line 9). Despite the fact that csv_read is called twice in
run_simulation, we register this information only once as a dependency from
run_simulation to csv_read. At runtime, noWorkflow is able to distinguish be-
tween different function activations of the same function call as well as different
activations of different calls from the same function definition.

Deployment Provenance. noWorkflow captures two different types of deploy-
ment provenance: environment and module (i.e., library) dependencies. This
provenance is captured right before the execution of the experiment script be-
gins, and is associated with an experiment trial. noWorkflow uses libraries pro-
vided by Python to capture environment information, including os to capture
operating system information, socket to capture the host name, and platform
to capture information about the machine architecture and Python environment.
noWorkflow also uses Python’s modulefinder library to find the transitive clo-
sure of all module dependencies. For each module that this library finds, our tool
stores the library name, version, file name (including its full path), and source
code (if available).

It is possible that environment and module dependencies change during the
script execution. In this case, to precisely capture this information, deployment
provenance would need to be gathered dynamically, right before each function
activation. However, since this situation is very rare (and advised against), and
to avoid introducing a large overhead, we have opted for capturing deployment
provenance right before executing the script.

noWorkflow: Capturing and Analyzing Provenance of Scripts 7

Execution Provenance. Execution provenance includes function activations,
argument values, return values, global values, start and finish times for each
function activation, as well as their context, and the content of all files ma-
nipulated by the experiment script during execution. noWorkflow captures this
information through profiling and reflection.

noWorkflow implements specific methods of the Python profiling API and
registers itself as a listener. During an execution, the profiler notifies the tool
of all function activations in the source code. Notice that this goes very deep
into the execution flow—recall that our simple simulation script has 156,086
function activations. As discussed before, to avoid overloading users with large
volumes of information, thus overcoming the granularity challenge, noWorkflow
only registers function activations related to user-defined functions. For the script
in Figure 1, noWorkflow registers that csv_read calls data.append (line 16), but
it does not register functions that data.append calls. At this moment, we also
capture the start time of the function activation, together with the values of every
argument, return, and globals that may be involved in the function activation.

While monitoring only user-defined functions reduces the volume of infor-
mation to be captured, it may miss an important aspect of the experiment: file
access. Explicit open system calls in the script will be captured, but if open is
called from a function not defined by the scientist (e.g., plt.savefig on line
33 of Figure 1), this information would be missed by noWorkflow. noWorkflow
addresses this issue by using reflection to alter the behavior of a system call. We
implement a new function that overwrites the system’s open function and alters
its behavior so that every time open is called, we capture the content of the file,
store it, call the original open system call, and then capture and store the file’s
content again. Thus, noWorkflow preserves the content before and after a file is
accessed, allowing us to detect, for instance, if a file has been modified.

Notice that reflection is not enough to identify which function called open. To
make this association, noWorkflow uses an activation stack : every time there is
an activation of a user-defined function, it is pushed onto the stack, and when the
activation finishes, it is popped from the stack. When open is called, the function
on top of the stack is tagged as being responsible for opening the file. Figure 3
shows an example: when plt.savefig is called from the user-defined function
plot (line 33), its activation is pushed to the stack; when open is called to save
output.png, plt.savefig will be on top of the stack, thus allowing noWorkflow to
link it to the modified file. Right before popping an activation from the stack, its
end time and return value are registered. If a function is activated several times,
noWorkflow registers all activations and links them with the activation on top of
the stack that triggered them. This allows noWorkflow to keep track of function
activation dependencies, together with the source code line that corresponds to
this call and all information previously discussed in this section.

3.2 Provenance Storage

Because transparency is one of our goals, noWorkflow includes an embedded
storage mechanism that does not require any installation or configuration. All

8 L. Murta et al.

open(output.png)
- capture and store output.png
 (if existent)
- call original open function

plt.savefig(output.png)plot(data)

calls

. . .

capture and store output.png

1
1 calls

Reflection

returnsreturns

Activation Stack

plot

plt.savefig
topX

4

3
2

5

Activation Stack
plot

top
plot

plt.savefig
top

1
1

plot

plt.savefig
top

1
2

plot

plt.savefig
top

1
3

plot

plt.savefig
top

1
4

plot
top

5
Activation Stack

open(output.png)
- capture and store output.png
 (if existent)
- call original open function

plt.savefig(output.png)plot(data)

calls
1
1 calls

Reflection

returnsreturns 4

3
2

5

Activation Stack

plot top plot
plt.savefig

top

2

plot
plt.savefig

top

3

plot
plt.savefig

top

4

plot top

5

plot
plt.savefig

top

1

Function Calls

capture and store output.png

plot top

simulation.py

5

plot top

simulation.py

open(output.png)
- capture and store output.png
 (if existent)
- call original open function

plt.savefig(output.png)plot(data)

calls
1
1 calls

Reflection

returnsreturns 4

3
2

5

Activation Stack

Function Calls

capture and store output.png

1

plot
plt.savefig

top

simulation.py

2

plot
plt.savefig

top

simulation.py

3

plot
plt.savefig

top

simulation.py

4

plot
plt.savefig

top

simulation.py

Fig. 3. Example of how reflection and activation stack work on noWorkflow. When
open is called (2), the file is captured before executing the original system call function
(3), and since plt.savefig is on top of the stack, noWorkflow knows that this function
is the one responsible for opening the file.

provenance is automatically stored to disk in a directory named .noworkflow in
the script directory. This directory holds both a relational database for struc-
tured data and a database for file contents. These databases are linked together
by means of SHA1 hash codes.

noWorkflow uses SQLite to store structured data which includes definition
provenance (e.g., function definitions and objects they reference, including func-
tion calls), deployment provenance (e.g., environment variables and module de-
pendencies), and execution provenance (e.g., runtime information about trials,
file accesses, function activations, and object values). Hash codes are also stored
whenever possible, e.g., SHA1 hashes of the source code of a function and of files
before and after access. In contrast, file contents are stored directly to disk in
what we call the content database. To avoid OS limitations regarding the number
of files that can be stored in a directory, we use the same strategy Git uses to
store files: file content is stored in a directory that corresponds to the first two
characters of its SHA1 hash in a file named by the remaining characters of the
SHA1 hash. noWorkflow maintains all files involved with the experiment, and
all SHA1 hashes stored in the relational database have a counterpart file stored
in the content database. Data in the SQLite database is always associated with
a given execution of the experiment script (i.e., a trial). This allows noWorkflow
to save disk space: whenever the hash code of a given file is the same, the hash
is stored in the database, but not the file itself again. In addition, the prove-
nance storage in noWorkflow eases reproducibility : scientists can simply share
the .noworkflow directory with their collaborators to exchange provenance data.

3.3 Provenance Analysis

While captured provenance aids reproducibility, another important goal is facili-
tating the analysis of provenance to locate, understand, and compare techniques.
The current version of noWorkflow supports three different analysis techniques:
graph-based, diff-based, and query-based.

noWorkflow: Capturing and Analyzing Provenance of Scripts 9

Fig. 4. Graph-based visualization generated from the example in Figure 1.

Graph-Based Analysis. Graph-based analysis is facilitated by visualizing the
provenance of a trial in a graph which provides an overview of the script ex-
ecution and supports comprehension of both functional and non-functional at-
tributes. However, the provenance of even simple scripts may consist of a large
number of function activations, particularly in the presence of loop structures,
which may lead to visualization overload problems. For this reason, noWorkflow
first summarizes the provenance before producing its activation graph. Our over-
all approach is based on a three-step strategy: summarization, construction, and
drawing.

The summarization step aggregates different activations of a function call if
they belong to the same context (i.e., same loop). The idea is to aggregate the
provenance by activation stack, function call line number, and function name.
Therefore, each function call may have multiple activations together with their
activation arguments, return values, and timestamps. The second step consists
of building a graph from the vertices generated by the summarization step and
edges extracted from the function activation sequence. There are three types of
edges: call, when a function calls another function; sequence, when two functions
are called in sequence within the same activation stack; and return, when a
function finishes its execution and the control flow returns to the function in the
top of the stack. Finally, the third step is rendering the graph. Each vertex is
labeled with the function name and is colored according to the traffic light scale
(shades from green to yellow to red) [4]: function calls with faster activations are
colored in shades of green, while the ones with slower activations are colored in
shades of red. Each edge displays the number of times the control flow passed
through it, and each edge type has a different shape to ease the visual distinction:
call edges are thicker and darker, sequence edges are thinner and lighter, and
return edges are dashed, thicker, and darker. There is also a tooltip window that
provides detailed information about each node (activation).

Figure 4 shows the graph-based visualization generated from the example of
Figure 1. From the graph, we can observe that the script called both run_simula-
tion and plot in sequence. It is also possible to see that run_simulation is
much slower than plot, and that there are four loop structures in the script,
summarized by noWorkflow: two loops occurring inside csv_read and two loops
occurring inside extract_column.

Diff-Based Analysis. In some provenance analysis scenarios, it is crucial to
contrast two trials to understand why results differ. There are many aspects
that influence the generation of an output, including script modifications, envi-

10 L. Murta et al.

ronment variable changes, and module updates. noWorkflow provides a mecha-
nism to contrast two trials and identify changes that may influence the results.
This mechanism allows comparison of the basic attributes of trials (e.g., date,
script, and arguments), environment variables, and module dependencies, show-
ing which attributes have changed, and which variables and modules have been
added, removed, or replaced. This is especially useful for reproducibility, since
it becomes easy to compare two executions of the same experiment in different
environments. Additionally, our diff-based strategy can be easily extended to
support object-specific diffs.
Query-Based Analysis. Since provenance data is stored in a relational database,
SQL would be a natural choice for the query language. However, SQL is known
to be very inefficient for recursive queries, and queries that employ transitive
closures would be hard to write and take a long time to process. To overcome
this limitation, we provide an inference-based query mechanism based on Pro-
log. noWorkflow is able to export Prolog facts and rules of a given trial which
can then be used to query the collected provenance data. The facts follow the
same structure of the relational tables that we use to store provenance data. To
make queries easier, noWorkflow also provides a set of Prolog inference rules.
As an example, the rule access_influence can be used to find out which
files may have influenced the generation of a given file. Running the query
access_influence(File, ’output.png’) returns a list of files that may in-
fluenced the generation of output.png, which, in the case of our example, are
data1.dat and data2.dat. Note that, since we export the Prolog facts, any Prolog
system can be used. New rules can also be added by users.

4 Related Work

Different mechanisms for provenance capture have been proposed, and some can
be applied to scripts. Tools that capture provenance at the operating system
level [6,8,17] monitor system calls and track processes and data dependencies
between these processes. Because the dependencies are recorded at the process
level, it can be difficult to reconcile the provenance with the script definition
as these systems cannot see what happens inside the processes. The provenance
captured by noWorkflow is of a different nature—it represents dependencies
within processes at the function level. In this sense, our approach is closer to the
work by Cheney et al. [2]. They proposed a formalism that uses techniques based
on program analysis slicing to represent the provenance of database queries so
that it is possible to show how (part of) the output of a query depends on (parts
of) its input. In contrast, we focus on provenance of (general) scripts, not just
database queries. Another important distinction is that noWorkflow captures
additional dependencies: it captures deployment provenance and, in addition to
function and variable dependencies, it also captures general data dependencies
from file reads and writes.

Several tools capture provenance from scripts and connect it to the experi-
ment data. Bochner et al. [1] proposed an API and a client library to capture
provenance for Python scripts. Gavish and Donoho [7] introduce the notion of a

noWorkflow: Capturing and Analyzing Provenance of Scripts 11

Verifiable Computational Result (VCR), where every result is assigned a unique
identifier and results produced under the exact same conditions have the same
identifier to support reproducibility. Unlike noWorkflow, these tools are intrusive
and require users to change their scripts and include specific API method calls.
Sumatra [3] collects provenance information from Python scripts. It is able to
capture input and output data produced by each run (as long as they are ex-
plicitly specified by the user), parameters, module dependencies, and platform
information. It is also able to detect when a module the script depends on has
changed. The source code, however, needs to live in a version control system
so that changes from one version to another can be detected. ProvenanceCu-
rious [10] is another tool that can infer data provenance from Python scripts.
It also uses AST analysis to capture every node of the syntax tree, and it uses
a graph to provide query capabilities. However, for every operation, it requires
input from the users regarding whether or not the operation reads or writes
persistent data—this information is transparently captured by noWorkflow.

The approach taken by Tariq et al. [19] makes use of the LLVM compiler
framework to automatically insert provenance capture at each function entry
and exit. Thus, similar to noWorkflow, their approach is transparent—users do
not need to manually annotate their code. However, there are important differ-
ences between the two approaches. Since Tariq et al. rely on a compiler, they
are restricted to capturing static information. noWorkflow, on the other hand,
captures both static and dynamic information. The latter is crucial for inter-
preted languages such as Python, since the underlying program (and objects)
can change during runtime. In addition, noWorkflow captures dependencies that
involve global variables within a function; these are ignored by Tariq et al.,
since they do not capture what happens inside functions. While our current im-
plementation selects user-defined functions to track, we would like to explore
mechanisms such as the one used by Tariq et al. to allow users to have more
control over the captured provenance.

5 Conclusions and Future Work

We have presented noWorkflow, an approach to capture provenance of experi-
ment scripts. Compared to previous approaches, the main benefits of noWorkflow
are: (i) it is completely transparent—users do not need to instrument their code;
(ii) it systematically captures three types of provenance—definition, deployment,
and execution provenance—using non-intrusive mechanisms; (iii) it does not re-
quire users to change their modus operandi: scripts can be outside of a controlled
environment and neither changes to the source code nor a version control sys-
tem are required; (iv) it provides support for different kinds of analyses over
the captured provenance data (graph-based, diff-based, and query-based); and
(v) it simplifies reproducibility, allowing scientists to exchange provenance by
sharing the .noworkflow directory with their peers. noWorkflow is available as
open source software at https://github.com/gems-uff/noworkflow. Prelimi-
nary experiments show that its overhead is not burdensome.

https://github.com/gems-uff/noworkflow

12 L. Murta et al.

One direction we plan to explore in future work is how to integrate provenance
at different levels (e.g., operating system level with function level). We also plan
to further investigate techniques for summarizing and visualizing provenance
graphs [11,14], including all three types of provenance, as well as for contrasting
different trials [15]. Last, but not least, we note that graph-based provenance
analysis opens a vast range of opportunities for automated analysis, such as: re-
verse engineering workflows from scripts; optimizing scripts by either refactoring
slow functions or running data mining algorithms to extract recurring execution
patterns; identifying flaws in script execution; and showing the script evolution
over time.
Acknowledgments. This work was supported in part by CNPq, FAPERJ, and
the National Science Foundation (CNS-1229185, CNS-1153503, IIS-1142013).

References

1. Bochner, C., Gude, R., Schreiber, A.: A Python Library for Provenance Recording
and Querying. In: IPAW. pp. 229–240 (2008)

2. Cheney, J., Ahamed, A., Acar, U.A.: Provenance as dependency analysis. Mathe-
matical Structures in Computer Science 21, 1301–1337 (12 2011)

3. Davison, A.: Automated Capture of Experiment Context for Easier Reproducibility
in Computational Research. Computing in Science Engineering 14(4), 48–56 (2012)

4. Diehl, S.: Software Visualization - Visualizing the Structure, Behaviour, and Evo-
lution of Software. Springer, London (2007)

5. Freire, J., Koop, D., Santos, E., Silva, C.: Provenance for computational tasks: A
survey. Computing in Science & Engineering 10(3), 11–21 (2008)

6. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of com-
putational provenance. Concurrency and Computation: Practice and Experience
20(5), 485–496 (2008)

7. Gavish, M., Donoho, D.: A Universal Identifier for Computational Results. Proce-
dia Computer Science 4, 637–647 (2011)

8. Guo, P.J., Seltzer, M.: BURRITO: Wrapping Your Lab Notebook in Computa-
tional Infrastructure. In: TaPP. pp. 7–7 (2012)

9. van der Hoek, A.: Design-time product line architectures for any-time variability.
Science of Computer Programming 53(3), 285 – 304 (2004)

10. Huq, M.R., Apers, P.M.G., Wombacher, A.: ProvenanceCurious: a tool to infer
data provenance from scripts. In: EDBT. pp. 765–768 (2013)

11. Koop, D., Freire, J., Silva, C.: Visual summaries for graph collections. In: Visual-
ization Symposium (PacificVis), 2013 IEEE Pacific. pp. 57–64 (2013)

12. Koop, D., Santos, E., Bauer, B., Troyer, M., Freire, J., Silva, C.T.: Bridging work-
flow and data provenance using strong links. In: SSDBM. pp. 397–415 (2010)

13. Koop, D., Scheidegger, C., Freire, J., Silva, C.T.: The provenance of workflow
upgrades. In: IPAW. pp. 2–16 (2010)

14. Macko, P., Seltzer, M.: Provenance map orbiter: Interactive exploration of large
provenance graphs. In: TaPP (2011)

15. Missier, P., Woodman, S., Hiden, H., Watson, P.: Provenance and Data Differencing
for Workflow Reproducibility Analysis. Concurrency and Computation: Practice
and Experience (2013)

16. Mouallem, P., Barreto, R., Klasky, S., Podhorszki, N., Vouk, M.: Tracking Files in
the Kepler Provenance Framework. In: SSDBM. pp. 273–282 (2009)

noWorkflow: Capturing and Analyzing Provenance of Scripts 13

17. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-aware
storage systems. In: USENIX. pp. 4–4 (2006)

18. Neves, V.C., Braganholo, V., Murta, L.: Implicit Provenance Gathering through
Configuration Management. In: SE-CSE. pp. 92–95 (2013)

19. Tariq, D., Ali, M., Gehani, A.: Towards automated collection of application-level
data provenance. In: TaPP. pp. 1–5 (2012)

	noWorkflow: Capturing and Analyzing Provenance of Scripts

